Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02

Glucose(葡萄糖)摄取能力检测试剂盒-Green货号:UP02
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

 

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

下载说明书
产品文献
代谢宣传资料
相关资料
SDS下载
葡萄糖摄取检测
选择规格:
1 set
现货
灵敏度高
酶标仪多样品检测
数据重现性高
葡萄糖检测试剂盒(点击查看)
产品解说
活动进行中
产品概述
产品优势
与传统法的比较
相关产品区别
实验例
常见问题Q&A
规格性状
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Viability Assay Kit – Luminescent Detection    细胞增殖/毒性检测-发光法(CCK-L)

NO.2.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.3.    Cell Counting Kit-8     细胞增殖毒性检测  

NO.4.    DALGreen – Autophagy Detection    细胞自噬检测

NO.5.    FerroOrange    细胞亚铁离子检测

 

产品概述

细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Green是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

1622445331924534.png

产品优势

与传统方向相比的优势! 4大特征

由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 高灵敏度

2-NBDG在水中的荧光强度很低,而本试剂盒采用的荧光染料可以进行高灵敏度的葡萄糖摄取能力检测。

1622448742785551.png

<观测条件>

细胞: A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

② 快速检测

使用高亮度的Glucose Uptake Probe-Green,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

1622448399984906.png

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便

1622600859388688.png

③  荧光酶标仪的多样品检测

2-NBDG很难用于荧光酶标仪的检测,而本试剂盒可用于荧光酶标仪的高通量筛选实验。

1614925589690463.png

<检测条件>

细胞:A549细胞

Ex: 488 nm; Em: 520 nm

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。

使用HBSS清洗细胞时

1622448547673285.png

使用WI Solution清洗细胞时

1622448568824383.png

(Scale Bar: 50 μm)

<观测条件>

细胞:A549细胞

检测仪器:荧光显微镜

检测滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

与传统法的比较

        Glucose Uptake Probe-Green和2-NBDG都可以用于荧光显微镜和流式细胞仪的检测。而相比较于2-NBDG的激发波长,Glucose Uptake Probe-Green对于488 nm的激发光以及GFP, FITC滤光片的适用度更高。

产品名 荧光

显微镜

荧光

酶标仪

流式

细胞仪

染料滞留时间 荧光特性
Glucose Uptake Assay Kit-Green 1 h※ λex: 507 nm, λem: 518 nm
2-NBDG × 30 min以下※ λex: 465 nm, λem: 540 nm

※A549细胞的检测结果,不同的细胞种类,染料的滞留时间可能会有差异。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消耗量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

Glucose Assay Kit-WST与本试剂盒的差别,通过下面的检测实例来说明。

实验例:用葡萄糖摄取抑制剂(Cytochalasin B)处理的HepG2细胞的葡萄糖消费量和葡萄糖摄取能力的检测。

实验的流程和检测结果:

1622603339865626.png

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察以及数值化的检测。

荧光显微镜观察

1639036970526396.png

(Scale Bar: 50 μm)

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM (0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪

1639037010253180.png

<检测条件>

Ex: 488 nm; Em: 520 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

荧光显微镜观察

1639037047647337.png

(Scale Bar: 50 μm)

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

1639037097789035.png

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基(0 or 1 μmol/l Insulin)。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

实验例3:前脂肪细胞和细胞脂肪细胞的葡萄糖摄取能力的比较

使用本试剂盒对前脂肪细胞(preadipocyte)和脂肪细胞(adipocyte)的葡萄糖摄取能力进行高灵敏度检测。

荧光显微镜观察

1639037132338146.png

(Scale Bar: 50 μm)

<观测条件>

细胞:preadipocyte, adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜; 滤光片:GFP (Ex: 470 /40 nm; Em: 525 /50 nm)

荧光酶标仪检测

1639037210721325.png

<检测条件>

Ex: 488 nm; Em: 520 nm

※由于脂肪细胞的特性,很难在孔板上均匀分布,所以实验数据会有一些孔间差。

<实验操作>

1.前脂肪细胞和脂肪细胞分别接种到不同的ibidi 96孔板中,过夜培养。

2.用不含葡萄糖的DMEM培养基清洗细胞2次后,加入不含葡萄糖的培养基。

3.在37℃下培养15 min。

4.加入用不含葡萄糖的培养基500倍稀释的Probe solution, 37℃下培养15 min。

5.用预冷至4℃的WI Solution(1x)清洗3次后,再次添加WI Solution(4℃)。

6.分别用荧光显微镜和荧光酶标仪检测。

 

实验例4:饥饿培养引起的细胞自噬和葡萄糖摄取变化

用自噬体染料DAPRed和自噬溶酶体染料DALGreen染色HeLa细胞后,用不含氨基酸的培养基培养3小时诱导细胞自噬。通过DAPRed和DALGreen的荧光强度增高确认细胞发生了细胞自噬,另外通过使用Glucose Uptake Probe-Blue发现细胞摄取葡萄糖的能力上升。

微信截图_20211209152737.png

(Scale Bar: 50 μm)

 

<检测条件>

荧光显微镜

Blue: Ex = 340-380 nm, Em = 435-485 nm

Green: Ex = 450-490 nm, Em = 500-550 nm

Red: Ex = 533-557 nm, Em = 570-640 nm

常见问题Q&A

Q1: Glucose Uptake Probe-Green具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2:目前有过检测实例的细胞有哪些?
A:目前的检测实例细胞系请参考下表:
细胞种类 Probe stock solution

的稀释倍率

染色时间
人肺腺癌细胞 A549 x 500 15 min
人肝癌细胞 HepG2 x 500 15 min
前脂肪细胞 preadipocyte(3T3-L1) x 500 15 min
脂肪细胞 adipocyte(3T3-L1) x 500 15 min
恶性黑色肿瘤细胞 MO5 x 500 15 min
小鼠成肌细胞 C2C12 x 500 5 min
人星形胶质瘤细胞 U-251 MG x 500 15 min
人子宫颈癌细胞 HeLa x 500 15 min
小鼠肺癌细胞 3LL x 50000 15 min
T细胞 CD4+ T cell x 50, x500 15 min
小鼠巨噬细胞 J774.1 x 500 15 min
线虫 N2 x 500 90 min
Q3:Glucose Uptake Probe-Green被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q4:Glucose Uptake Probe-Green被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q5:用荧光酶标仪检测时候,对孔板有什么特别要求吗?
A:需要使用荧光检测用的细胞培养板。
Q6:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q7:无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q8:荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q9:Glucose Uptake Probe-Green对细胞有毒性吗?
A:使用同仁化学研究所的Cell Counting Kit-8(货号:CK04)对A549细胞的Glucose Uptake Probe-Green细胞毒性进行了检验,没有发现细胞毒性的产生。
Q10:用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q11:可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。

 

Q12:可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q13:如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)图片1.jpg

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。 请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并 在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。

9.荧光显微镜下观察细胞。

图片3.jpg

Q14: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
02.png

规格性状

            Glucose Uptake Probe-Green  ×1

WI Solution (50X)   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

参考文献

编号 文献 IF
1 Enhanced   aerobic denitrification performance with Bacillus licheniformis via secreting   lipopeptide biosurfactant lichenysin, Chemical Engineering   Journal,2022,434:134686 2022 13.3
2 Genetically   engineered probiotics as catalytic glucose depriver for tumor starvation   therapy 2023 10.8
3 Remodeling   on adipocytic physiology of organophosphorus esters in mature adipocytes 2022 9.9
4  Simple Fluorescence Assay for Cystine Uptake   via the xCT in Cells Using Selenocystine and a Fluorescent Probe, ACS   Sensors,2021, 6(6):2125-2128 2021 7.7
5 N-Caffeoyltryptophan   enhances adipogenic differentiation in preadipocytes and improves glucose   tolerance in mice 2023 3.7

Glucose(葡萄糖)摄取能力检测试剂盒-Blue货号:UP01

Glucose(葡萄糖)摄取能力检测试剂盒-Blue货号:UP01
葡萄糖摄取检测试剂盒
葡萄糖代谢、葡萄糖摄取
商品信息
储存条件:0-5°C
运输条件:常温

特点:

 

● 检测灵敏度高

● 操作简便,用时短

● 可以用荧光酶标仪做高通量筛选

● 荧光染料泄露少,数据重现性高

下载说明书
葡萄糖摄取检测
选择规格:
1 set
期货
数据重现性高
葡萄糖检测试剂盒(点击查看)
产品解说
产品概述
产品优势
相关产品区别
实验例
常见问题Q&A
规格性状

产品解说

 

产品概述

细胞通过摄入各种各样的营养物质并在胞内的代谢作用下产生能量。营养物代谢的过程随着细胞外环境、细胞状态、细胞种类的不同亦不尽相同。近年来的研究发现,营养代谢不仅与能量的产生密切相关,还与基因表达等各种各样的细胞调节机制有关。葡萄糖是最重要的一种营养物质,细胞摄取葡萄糖的过程对于研究和理解细胞机能非常重要。细胞摄取葡萄糖的评价方法主要是放射性同位素示踪法。但是由于放射性同位素示踪法操作繁杂,泛用性并不高。另外,还有一种使用2-Deoxy-D-glucose(2-DG)的酶循环法,该方法虽然可以进行孔板检测,但是无法用于荧光显微镜和流式细胞仪观察。因此,最近常用的方法是通过葡萄糖类似物2-NBDG的荧光检测法1)。然而,2-NBDG也有荧光强度弱、灵敏度低的问题,而且被细胞摄取的2-NGDG还有从细胞中向外泄漏的情况出现。同仁化学研究新开发的荧光葡萄糖类似物Glucose Uptake Probe-Blue是一种比2-NBDG灵敏度更高的葡萄糖摄取能力检测试剂。而且使用本试剂盒中包含的Washing and Imaging (WI) Solution可以抑制探针从细胞内泄漏,得到重现性更高的实验数据。

image.png

产品优势

与传统方向相比的优势! 4大特征

Glucose Uptake Probe-Blue是蓝色荧光染料,可以轻松得与其他颜色的荧光染料共染色。另外,由于采用高亮度的荧光染料,相较于传统方法(2-NBDG)可以在更短时间内进行高灵敏度检测。

① 与其他荧光染料的共染色

可以根据实验需求,选择其他荧光染料与Glucose Uptake Probe进行共染色,一次检测多个指标。下图是用Glucose Uptake Probe Blue与脂肪滴(红色:Lipi-Red 货号LD03)共染色脂肪细胞分化而来的3T3-L1细胞的荧光图像。

微信截图_20211126084739.png

 

<观测条件>

细胞: 3T3-L1

检测条件:

Glucose Uptake Probe-Blue:Ex = 340-380 nm; Em = 435-485 nm

Lipi-Red:Ex = 533-557 nm; Em = 570-640 nm

② 可用荧光显微镜或流式细胞仪检测

下面是分别使用不含葡萄糖的培养基以及高葡萄糖浓度的培养基培养A549细胞并用Glucose Uptake Probe-Blue进行染色的实验结果。可以观察到高浓度葡萄糖对Glucose Uptake Probe-Blue摄入的抑制作用。结果分别用荧光显微镜和流失细胞仪进行检测。

1637887737876041.png

 

细胞:A549

检测条件

Glucose Uptake Assay Kit-Blue:Ex = 340-380 nm, Em = 435-485 nm

③ 快速检测

使用高亮度的Glucose Uptake Probe-Blue,即使使用2-NBDG完全相同的实验步骤,也可以大幅缩短实验时间。

1637887794786312.png

操作的前处理、染色(进入细胞内的过程)的步骤只需要清洗3次,非常简便。

1637887806103518.png

④  减少荧光染料的泄漏

使用试剂盒附带的WI Solution清洗细胞,可以抑制染料进入细胞后的泄漏,得到重现性更高的数据。详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02的页面。

 

与传统法的比较

1637887857748069.png

*以上结果源自A549细胞实验的结果,其他细胞系的向胞外泄露的时间可能不同。

相关产品区别

与Glucose Assay Kit的不同点

Glucose Uptake Probe-Green和Glucose Assay Kit-WST(货号:G264)的不同点。

 

1.Glucose Assay Kit-WST可以定量检测细胞上清液中葡萄糖的消费量。

Glucose Uptake Assay Kit无法定量检测葡萄糖。

 

2.Glucose Uptake Assay Kit-Green可短时间内检测葡萄糖摄取能力的差值。

Glucose Assay Kit-WST无法在短时间内检测葡萄糖量的变化。

 

详细的实验数据请参考Glucose Uptake Assay Kit-Green 货号UP02的页面。

实验例

实验例1:Cytochalasin B对葡萄糖摄取的抑制作用

HepG2细胞经过葡萄糖转运蛋白抑制剂Cytochalasin B处理后,使用本试剂盒对葡萄糖摄取能力的抑制作用进行高灵敏度观察。

 

荧光显微镜观察

1637887957732546.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:HepG2细胞

使用培养基:MEM (5.5 mmol/l Glucose)

培养条件:5 µmol/l Cytochalasin B / MEM (5.5 mmol/l Glucose, 10% FBS), 37℃, 24 h

染色条件:Glucose Uptake Probe (500倍稀释)/DMEM (0 mol/l Glucose), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

实验例2:Insulin(胰岛素)对细胞葡萄糖摄取能力的促进

胰岛素对脂肪细胞(adipocyte)的葡萄糖摄取能力的影响通过本试剂盒进行高灵敏度检测。

荧光显微镜观察

1637887997118332.png

(Scale Bar: 50 μm)

 

<观测条件>

细胞:mouse adipocyte

使用培养基:DMEM (5.5 mmol/l Glucose, 10% FBS)

刺激条件:0 or 1 µmol/l Insulin / DMEM (0 mmol/l Glucose , serum free), 37℃, 15 min

染色条件:Glucose Uptake Probe-Green (500倍稀释) /DMEM (0 mmol/l Glucose, serum free), 37℃, 15 min

检测仪器:荧光显微镜;

Glucose Uptake Assay Kit-Blue: Ex = 340-380 nm; Em = 435-485 nm

Glucose Uptake Assay Kit-Green: Ex = 450-490 nm; Em = 500-550 nm

Glucose Uptake Assay Kit-Red: Ex = 533-557 nm; Em = 570-640 nm

 

实验例:饥饿培养诱导细胞自噬以及葡萄糖摄取能力的变化

用自噬体染色试剂DAPRed和自噬溶酶体染色试剂DALGreen染色HeLa细胞后,再用不含氨基酸的培养基饥饿培养3小时诱导细胞自噬。通过荧光显微镜观察发现DAPRed和DALGreen的荧光强度增强,证明细胞自噬的发生,另外通过Glucose Uptake Probe-Blue观察到细胞摄取葡萄糖的能力上升。

微信截图_20220127113218.png

<检测条件>

Blue: Ex = 340-380 nm, Em = 435-485 nm

Green: Ex = 450-490 nm, Em = 500-550 nm

Red: Ex = 533-557 nm, Em = 570-640 nm

Scale bar: 50 μm

常见问题Q&A

Q1:Glucose Uptake Probe-Blue具体是通过哪种葡萄糖转运蛋白进入细胞的?
A:对于具体的每一种葡萄糖转运蛋白的特异性目前还没有详细的数据。
Q2:Glucose Uptake Probe-Blue被细胞摄入后,会被分解或代谢掉吗?
A:染料的荧光部分非常稳定,实验范围内的操作不会造成分解。另外,类葡萄糖的部位,从结构上考虑可能会被Hexokinase(己糖激酶)磷酸化,除此以外应该不会参加任何代谢反应。
Q3: Glucose Uptake Probe-Blue被活细胞摄入后,可以进行细胞固定的操作吗?
A:由于荧光探针会从细胞内漏出,染色后无法进行细胞固定。
Q4:Probe working solution可以长期保存吗?
A:Probe working solution无法长期保存,请现配现用。Probe stock solution冷冻可以保存一个月。
Q5: 无法观察到荧光信号变化的时候,应该怎么办?
A:预实验的时候可以先从稀释浓度(x250~x1,000)、染色时间(5 min~1 h)范围内进行摸索。
Q6:荧光背景高的时候,应该怎么办?
A:可能是由于有未被细胞摄入的残留荧光染料。请用WI Solution再多进行一次清洗操作。
Q7: 用WI solution清洗之后,荧光染料可以在细胞内停留多长时间?
A:一般在室温下可以保持在细胞内1 h左右,不同的细胞种类,时间可能会有一定差别。
Q8:可以对葡萄糖进行定量检测吗?
A:本产品不能用于葡萄糖的定量检测。如果需要定量检测培养基中的葡萄糖的消耗量或者细胞内的葡萄糖量,可以使用同仁化学研究所的Glucose Assay Kit-WST(货号:G264)。
Q9: 可以对被细胞摄入的染料进行定量吗?
A:不可以对细胞摄入的染料进行定量。本试剂盒是葡萄糖摄取能力强弱或增减的检测试剂盒。
Q10: 如果无法通过葡萄糖的竞争性抑制细胞探针的摄取,该如何解决?
A:竞争性抑制是否发生取决于每个细胞中的葡萄糖转运蛋白的表达水平和类型。(例如:HepG2细胞)图片1.jpg

在这种情况下,使用2-脱氧葡萄糖(2-DG)进行预处理可能会在葡萄糖竞争抑制方面产生差异。请参考Glucose Uptake Assay Kit-Green(产品代码:UP02)的使用示例。

2-DG预处理对探针摄取的抑制和葡萄糖竞争性抑制(HepG2细胞)

1.将细胞接种在培养皿或微孔板中,并在5% CO₂培养箱(37°C)中培养过夜。

2.除去培养基[DMEM (10% FBS,高葡萄糖)]后,加入50 mmol/l 2-DG/培养基,并在5% CO₂培养箱(37℃)中培养细胞2小时。

3.清洗细胞两次。

4.加入预热的DMEM(无葡萄糖,无血清)并将细胞在5%CO₂中孵育 在培养箱(37°C)中培养15 min。

5.除去上清液后,加入预热的探针溶液并在5% CO₂中孵育 在培养箱(37°C)中培养15 min。

6.除去上清液后,用冷却的WI溶液(1x)洗涤细胞两次。

7.除去上清液后,加入冷却后的WI溶液(1x),并在室温下培养 5分钟。

8.除去上清液后,加入冷却的WI溶液(1x)。

9.荧光显微镜下观察细胞。

图片3.jpg

Q11: 目前有过检测实例的细胞有哪些?
02.png

 

Q12: 以下为不同细胞添加抑制剂后,葡萄糖摄取能力检测实验。
01.png

 

规格性状

            Glucose Uptake Probe-Blue  ×1

WI Solution (50X)   5 ml ×1

供参考的可测次数

每个试剂盒大约可检测12枚35 mm dish或1枚96孔板

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit货号:G270
糖酵解/氧化磷酸化检测试剂盒
Glycolysis/OXPHOS Assay Kit
商品信息
储存条件:0-5度保存,避光
运输条件:常温

特点:

●酶标仪即可检测,无需昂贵的检测仪器

●试剂盒包含所有所需试剂 All in One Kit

●详尽的操作手册

 

 

下载说明书
宣传资料
选择规格:
50tests
期货
产品解说
规格性状
产品概述
三种评价方式
实验例
常见问题Q&A
产品文献

产品解说

 

规格性状

微信截图_20211227153025.png

产品概述

很多癌细胞都是主要依靠糖酵解途径产生ATP,而近年来的研究发现,如果抑制癌细胞的糖酵解途径,细胞中的主要能量代谢会从糖酵解途径向线粒体的氧化磷酸化途径转移。对于这一现象的研究,有望成为新的抗癌药物研发的靶点,并且在细胞衰老、神经退行性疾病等其他疾病的治疗和药物研发的工作中也具有潜力,因此而备受瞩目。

本试剂盒通过酶标仪就可以方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度。试剂盒中包含所有所需的试剂,可大幅减少实验前的准备工作和时间。

微信截图_20211227153549.png

三种评价方式

用Oligomycin抑制氧化磷酸化(OXPHOS)的ATP合成,或者用2-Deoxy-D-glucose(2-DG)抑制糖酵解(Glycolysis)的ATP合成,然后通过检测ATP的量(发光法)和Lactate的量(吸光度法)对下图中的①~③进行评价。

1638262234559668.png

实验例

对糖酵解抑制剂(2-DG)处理后的HeLa细胞进行糖酵解能评价和代谢途径转移评价。糖酵解能评价(左图)的结果可以看出,HeLa细胞经过糖酵解抑制剂作用后,糖酵解能明显降低。而代谢途径转移评价的结果(右图)可以看出,糖酵解抑制剂作用后,HeLa细胞内的代谢途径开始向氧化磷酸化转移,由线粒体产生的ATP明显增加。

微信截图_20220107095600.png

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可检测的样品数请见下表:

1638262534872611.png

※以上是按照不做预实验,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

1638262916311857.png

※以上是先做预实验,再做正式实验时,最多可能检测的样品数量。

※Lactate Assay时,如果培养基内含有血清,建议单独检测含有血清的培养基,作为背景空白扣除。

1638263343672302.png

糖酵解能评价(Lactate Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

1638263501722126.png

代谢途径转移评价(ATP Assay)的孔板设置例(n=3时)

(左:不做预实验; 右:做预实验)

1638263540751974.png

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(不做预实验)

1638263591867173.png

代谢途径依赖程度评价的孔板设置例(n=3时)

(左:ATP Assay; 右:Lactate Assay)(做预实验)

Q:在做糖酵解能评价时,实验孔与空白孔(只含培养基)的吸光度没有变化,是什么原因?有哪些改善方法?
A:可能的原因是细胞释放的乳酸量过少,建议提高细胞数,增加培养时间(3小时⇒5小时)。
Q:是否需要通过使用蛋白质定量分析使乳酸和ATP浓度正常化?
A:Oligomycin和2-DG处理5小时的检测结果,用蛋白定量校正和不校正的结果几乎没有变化。但是,如果检测中使用其他药物时,请预先确认该药物是否会对细胞数和蛋白质的量有影响,然后再用本试剂盒检测。

1638325735596483.png

需要用蛋白质定量进行校正的时候,请参考下图中的步骤。

※在进行蛋白质定量校正的时候,由于ATP Assay的试剂的原因,不能使用ATP Assay或Lactate Assay检测时使用的细胞,请额外专门准备蛋白质定量用的细胞悬液。

1638330974173700.png

Q:Lactate Assay时,是否可以用450 nm以外的滤光片检测?
A:如果没有450 nm的滤光片,可以用490 nm滤光片检测,不过检测得到的吸光度的值要比450 nm检测时低。

1638331171803617.png

Q:发光信号是否稳定?
A:发光信号在3小时以内都稳定。不过,发光信号会受温度和光照影响,如果不能立即检测的话,请在避光和25℃环境下静置。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:  ATP检测时用的发光法,检测波长为多少?
A:由于P是通过萤光素检测,所以检测波长为556 nm。

产品文献

No. Sample Reference
1 Cell
(RAW264.7)
H. Gu, Y. Zhu, J. Yang, R. Jiang, Y. Deng, A. Li, Y.   Fang, Q. Wu, Honghuan Tu, Haishuang Chang, Jin Wen, and X. Jiang, “Liver-Inspired Polyetherketoneketone Scaffolds   SimulateRegenerative Signals and Mobilize Anti-InflammatoryReserves to   Reprogram Macrophage Metabolism for Boosted Osteoporotic   Osseointegration”, Adv. Sci., 2023, doi.org/10.1002/advs.202302136.
2 Cell
(A549)
L.   Liu, B. Wang, R. Zhang, Z. Wu, Y. Huang, X. Zhang, J. Zhou, J. Yi, J. Shen,   M. Li, and M. Dong, “The activated CD36-Src   axis promotes lung adenocarcinoma cell proliferation and actin   remodeling-involved metastasis in high-fat environment”, Cell Deat   & Disease, 2023, doi.org/10.1038/s41419-023-06078-3.
3 Canine GL cell lines H.   Yamazaki, S. Onoyama, S. Gotani, T. Deguchi, M. Tamura, H. Ohta, H. Iwano, H.   Nishida, P.J. Dickinson and H. Akiyoshi, ‘Influence   of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) on Glycolytic   Metabolism of Canine Glioma: A Potential Improvement in Cancer   Metabolism’, Cancers, 2023, doi:10.3390/cancers15235537.
4 Cell
(Primary Hepatocyte)
S.   Tsuno, K. Harada, M. Horikoshi, M. Mita, T.   Kitaguchi, M. Y. Hirai, M. Matsumoto and T. Tsubo , ‘Mitochondrial ATP concentration decreases immediately after   glucose administration to glucose-deprived hepatocytes’, FEBS Open   Bio, 2023, doi:10.1002/2211-5463.13744.

关联产品

Lactate Assay Kit-WST试剂盒
乳酸检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒
氧消耗量检测试剂盒
Glucose(葡萄糖)摄取能力检测试剂盒-Green
葡萄糖摄取检测试剂盒
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence
ADP/ATP比率检测试剂盒
Glucose Assay Kit-WST试剂盒
葡萄糖检测试剂盒

Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Glycolysis/JC-1 MitoMP Assay Kit货号:G272
糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测试剂盒
Glycolysis/JC-1 MitoMP Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 一个样品同时检测两种指标

● 包含所有所需试剂

● 详细的操作步骤

下载说明书
宣传资料
选择规格:
50testsA
现货
\
规格性状
产品概述
产品特点
检测原理
实验例
常见问题Q&A

规格性状

image.png

产品概述

线粒体功能与细胞代谢之间的联系是众所周知的,对一系列疾病都有影响,包括癌症、衰老和神经退行性疾病。已经发现,衰老细胞通常依靠糖酵解系统生存,而不是利用线粒体能量来源。相反,即使糖酵解系统受到抑制,通常严重依赖糖酵解的癌细胞激活线粒体功能依然能确保其存活,。鉴于这些观察结果,越来越有必要研究线粒体功能和糖酵解途径,以增强我们对细胞内代谢改变的理解。我们的试剂盒允许测量乳酸产生(通过乳酸测定)以检测糖酵解系统的变化,以及线粒体膜电位(通过JC-1测定)以评估线粒体功能。该试剂盒的概念是提供来自同一样品的全面一站式检测,以跟踪细胞内代谢的变化并指导后续更详细的分析。该试剂盒包括检测所需的所有试剂,还提供组合方案。

1686013168430228.png

1686013182374602.png

1686013205819173.png

产品特点

任何刺激引起的细胞内代谢变化都可以通过测量乳酸产生和线粒体膜电位来检测。

在某些情况下,尽管细胞糖酵解系统或线粒体功能(能量产生的主要途径)受到损害,但细胞仍设法存活。据了解,这是因为细胞努力通过增强糖酵解来持续并防止细胞死亡,即使线粒体功能受损,或者在糖酵解受损时激活线粒体功能,同时监测糖酵解系统和线粒体功能。如下所述,可以深入了解细胞内发生的事情。

1686013695469824.png

同时测量同一样品

通过从单个样品中分离上清液和细胞,可以同时测量线粒体膜电位(JC-1测定)和乳酸产生。详细的测量方法在说明书中描述。

1686015510691639.png

检测原理

该试剂盒包括乳酸检测试剂盒,旨在通过测量WST甲臜吸光度来检测细胞培养基中的乳酸产生。此外,它还具有JC-1染料,用于使用荧光测量检测细胞内的线粒体膜电位。使用酶标仪在同一样品上轻松定量这两个靶标,便于评估代谢变化。

1686013436783590.png

实验例

用糖酵解抑制剂2-脱氧-D-葡萄糖(2-DG)处理的HeLa细胞的细胞内代谢变化

当我们使用CCK-8*测定法评估8-DG处理的HeLa细胞的细胞活力时,我们观察到活力的微小变化。然而,鉴于观察到乳酸产生的减少,它促使我们质疑尽管糖酵解系统受到抑制,如何维持细胞活力。为了回答这个问题,我们使用JC-1测定法检查了线粒体膜电位。这项研究的结果表明,当糖酵解系统被2-DG抑制时,HeLa细胞通过增强线粒体功能来维持其存活。

※ 细胞计数试剂盒-8(产品代码:CK04)不包含在本试剂盒中。

1685411575641939.png

常见问题Q&A

Q:每个试剂盒可以检测多少样品?
A:【乳酸测定】按每个样品3个复孔计算,您可以检测到如下样品数量

1686190993685203.png

*如果样品的乳酸浓度未知,请进行预实验,以确定稀释比例,使其低于1 mmol/l乳酸标准溶液的吸光度。 请参照说明书中“检测样品的制备”。

*进行预实验或不进行预实验时,可检测的最大样品数详见以上表格。

*进行乳酸测定时,如培养基含有血清,建议制备一个含血清的培养基的测量样品,作为背景对照。

1686190785419214.png

乳酸测定的孔板设置示例(n = 3)

(左:无预实验,右:预实验)

【JC-1 检测】

1686191659983809.png

※ 本试剂盒,至少可使用96孔板检测48个孔。

Q: 使用此试剂盒进行乳酸检测和 JC-1 检测需要多长时间?
A: 实验流程和每次测定所需的时间(大约)如下图所示。

1686191986780370.png

Q: 【乳酸检测】是否可以先进行乳酸测定,然后在收集上清液后进行JC-1测定?
A: 如果首先进行乳酸测定,测量时间的差异可能会由于刺激条件的不同而影响结果。 收集上清液后,请务必先进行JC-1测定。 细胞培养上清液可冷冻(-20°C)保存1个月。
Q: 【乳酸检测】乳酸测定可以使用450 nm以外的波长进行测量吗?
A: 除了 450 nm 外,它还可与 490 nm 滤光片一起使用。 但是,吸光度值会低于在450nm处测量时的值。1686192184333192.png
Q: 【乳酸检测】乳酸测定可以测量含有还原性物质的样品吗?
A:如果样品中含有还原性物质,染料WST会变色,您可能无法准确测量乳酸的变化。 如果您的检测物质中含有还原性物质,请准备一些只有待测物+培养基的孔【不含细胞】,作为背景对照。最后计算时,从标准曲线/样品吸光度结果中扣除以上背景对照。
Q:【乳酸检测】工作液稳定性如何?
A:工作液无法保存。 请现配现用。 另外,由于它对光不稳定,因此避光,工作液在室温避光条件下,可稳定保存4个小时。

一旦工作液未避光,则颜色会从红色变为橙色,从而导致背景的增加。

Q:【乳酸检测】细胞培养上清液样品可以保存吗?
A:可以冷冻(-20°C)储存1个月。
Q:【JC-1 检测】我可以使用含血清的培养基吗?
A:含血清的培养基可以在清洗细胞或制备JC-1工作液时使用,在荧光观察时,我们建议使用Imaging Buffer溶液,但如果一定要使用含血清的培养基,也建议使用无酚红的培养基。
Q:【JC-1检测】是否可以固定细胞?
A:不建议,由于线粒体固定后会发生去极化,因此染色后固定和固定后染色都是不可能的。
Q:【乳酸检测】检测到的样品的吸光度与空白孔的吸光度相同, 原因和解决方案是什么?
A:原因可能是细胞释放的乳酸量低。 首先,请增加要接种的细胞数量或进一步延长孵育时间。
Q:【JC-1检测】如何解释增加(或减少)红色和绿色的荧光值的结果?
A:计算每个药物处理后的样品和对照组的红色与绿色荧光值的比率。将两者进行比较,荧光比越低,线粒体膜电位越低。

 

【按红/绿比评估的原因】

由于JC-1以膜电位依赖性方式在细胞中积累,因此每个细胞的JC-1浓度可能因细胞的状态而变化1),2)(由于细胞条件的不同,实验组和对照组的JC-1累积浓度不同)。

此外,当线粒体膜电位高时,JC-1聚集,其荧光从绿色变为红色。

JC-1累积的量则取决于膜电位3)因此样品的线粒体膜电位变化可以通过红/绿比进行分析比较。

〈参考资料〉

1) A. Cossarizza, et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2) A. Perelman, et al., Cell Death and Disease, 2012, 3, e430.

3) S. T. Smiley, et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04

氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit货号:UP04
氨基酸摄取能力检测试剂盒
Amino Acid Uptake Assay Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 使用荧光显微镜、荧光酶标仪或流式细胞仪即可快速检测

● 简便操作即可检测氨基酸摄取能力

※注意:您选择的孔板类型会对实验结果产生重大影响。并非所有孔板都与本检测方法兼容。 

您可以下拉参考网站“常见问题Q&A”,查看推荐的孔板及其对检测结果的影响。

下载说明书
产品文献
宣传资料下载
学习资料
选择规格:
20tests
100tests
现货
产品解说
规格性状
产品概述
运用领域
操作步骤
实验例
与传统方法比较
关联产品
常见问题Q&A
产品文献

产品解说

 

规格性状

1635900625983946.png

产品概述

氨基酸是合成蛋白质和核酸的重要来源,对于增殖活性异常活跃的癌细胞来说尤其重要。不仅如此,癌细胞由于其自身糖酵解途径的亢进,造成乙酰辅酶A(Acetoacetyl-CoA)供应的减少,更加剧了对TCA循环来源之一的氨基酸的需求。基于此方面的研究发现,癌细胞中氨基酸转运体LAT1(L-type amino acid transporter 1)的表达明显增高,说明氨基酸的大量摄取是癌细胞的普遍特征之一。这一发现也有望成为癌症药物研发的新靶点。

在癌症免疫治疗领域,治疗效果不仅与癌细胞的代谢变化有关,免疫细胞的代谢调控也至关重要。例如,随着免疫细胞的衰老,代谢平衡的改变会导致免疫细胞对癌细胞的杀伤能力减弱。因此,通过调控免疫细胞的代谢来改善免疫治疗效果的研究也十分盛行。

氨基酸类似物(BPA)通过氨基酸转运体吸收到细胞后,探针穿透细胞膜并与氨基酸类似物结合,发出荧光(λex=360 nm,λem=460 nm)。本试剂盒可使用荧光显微镜、荧光酶标仪和流式细胞仪检测,通过可视化和数值化的检测评价细胞摄取氨基酸的能力,以及氨基酸转运体抑制剂的筛选。2.png

本试剂盒是在日本大阪府立大学切畑光统(Kirihata Mitsunori)教授提供情报和指导下开发的产品。

运用领域

抑制氨基酸的吸收是癌症药物开发和筛选的靶点之一。此外,通过比较正常细胞和癌细胞的氨基酸吸收能力,还可以了解癌细胞的恶性程度及其细胞特征。1635904506395614.png

操作步骤

1686013446681848.png

实验例

使用本试剂盒检测BCH(氨基酸转运体抑制剂)对HeLa细胞摄取氨基酸能力的阻碍作用。1635485812944870.png

<检测条件>

细胞:HeLa cells

培养基:MEM (5.5 mmol/l Glucose)

培养条件:1 mmol/l BCH/HBSS (Hanks’ Balanced Salt Solution), 37℃, 30 min

检测仪器:荧光酶标仪 (Ex=340-380 nm, Em: 435-485 nm)

检测仪器:荧光酶标仪 (Ex=360 nm, Em: 460 nm)

1635485841451854.png

<检测条件>

检测仪器:流式细胞仪 (Ex=405 nm, Em: 425-475 nm)

与传统方法比较

与传统的同位素示踪法和代谢组学检测法相比,操作时间大幅减少。

微信截图_20211116100012.png

关联产品

产品名 包装 价格 货号
 Glucose Uptake Assay Kit-Blue 1 set 3,980 UP01
    Glucose Uptake Assay Kit-Green 1 set 3,980 UP02
Glucose Uptake Assay Kit-Red 1 set 3,980 UP03

常见问题Q&A

 

Q:推荐什么类型的微孔板?
A:我们推荐以下几种微孔板

微信截图_20211116095811.png

微孔板的类型对检测结果有何影响,请参考【Q&A:微孔板的类型会影响结果吗?】获取更多信息。

 

Q:微孔板的类型会影响结果吗?
A:是的。并非所有微孔板都与该测定兼容,有些微孔板可能无法进行某些测量(参见参考数据)。

建议使用以下板检测

微信截图_20211116095811.png

<参考:微孔板之间的比较>

使用Ibidi板和其他制造商的微孔板,我们研究了HeLa细胞在氨基酸转运蛋白抑制剂BCH(2-氨基双环[2.2.1]庚烷-2-羧酸)存在下摄取氨基酸的能力。然而,我们无法确认BCH对吸收的抑制,因为与推荐的Ibidi板相比,在其他制造商的微孔板中观察到更高的背景。

荧光显微镜观察

1687657834830794.png

荧光酶标仪检测结果

1687658717673724.png

 

 

Q:BPA是通过哪种转运蛋白进入细胞内的?
A:有文献报道BPA是通过LAT1, LAT2, ATB0,+转运进入细胞的(Wongthai P et al., “Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2”, Cancer Sci., 2015, Mar;106(3):279-86)。此外,同仁化学也通过实验验证了BCH等LAT1的抑制剂、leucine等LAT1的底物对BPA摄取的抑制作用。

 

 

 

Q:已经有检测实例的细胞系有哪些?
A:贴壁细胞有HeLa, A549, HepG2, MCF-7, C2C12, MEF, U251;悬浮细胞有MOLT4。

 

Q:BPA被细胞摄入后,是否会被分解或代谢掉?
A:BPA的构造非常稳定,实验操作范围的过程中不会被分解。
Q:BPA被细胞摄入后,能否进行固定化操作?
A:由于探针会从细胞内向细胞外泄漏,所以无法进行染色后的固定化操作。

 

Q:BPA被细胞摄入后,是否会在特定部位积累?
A:被细胞摄取的BPA均匀的分布在细胞内。

 

Q:BPA uptake solution,Working solution能否长时间保存?
A: BPA uptake solution,Working solution无法长期保存,请现配现用。
Q:如果荧光信号没有变化,我该怎么办?
A:主要可能的原因有以下两点:      ①细胞本身对BPA solution的摄入能力较低。此时建议尝试提高BPA solution

的浓度。(5~50倍稀释)

②Working solution发生变质,请重新配置Working solution,保证现配现用。

Q:如果荧光背景较高, 我该怎么办?
A: 检测环境中可能含有未被细胞摄入的BPA。此时建议用HBSS清洗后再检测。
Q:BPA是否可以定量检测?
A:无法进行定量检测,本染料是评价细胞摄取氨基酸能力高低或增减的试剂。

1635903158838266.png

产品文献

1、T. Watanabe, Y. Sanada, Y. Hattori, and M. Suzuki, “Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy”, 2022, J. Radiat. Res., doi:10.1093/jrr/rrac077.

2、Wencan Zhang,Xu Cao,Xiancai Zhong,Hongmin Wu,Yun Shi,Mingye Feng,Yi-Chang Wang, David Ann,Yousang Gwack,Yate-Ching Yuan,Weirong Shang ,and Zuoming Sun,”SRC2 controls CD4+ T cell activation via stimulating c-Myc-mediated up-regulation of amino acid transporter Slc7a5″,2023PNAS【11.1】doi:10.1073/pnas.2221352120.

关联产品

糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit
糖酵解/氧化磷酸化检测试剂盒
Lactate Assay Kit-WST试剂盒
乳酸检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒
氧消耗量检测试剂盒
Glucose(葡萄糖)摄取能力检测试剂盒-Green
葡萄糖摄取检测试剂盒
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence
ADP/ATP比率检测试剂盒

代谢 糖代谢 脂质代谢 线粒体呼吸 氨基酸代谢

代谢

细胞内代谢系统(糖酵解系统,TCA回路和电子转移系统)的分析对于理解细胞状态非常重要。
糖代谢
脂质代谢
线粒体呼吸
氨基酸代谢

品名货号用途

Glycolysis/JC-1 MitoMP Assay Kit G272 糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测
糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit G270 方便快捷的检测糖酵解能、细胞代谢途径转移、细胞对糖酵解途径和氧化磷酸化途径的依赖程度
Glucose(葡萄糖)摄取能力检测试剂盒-Blue UP01 葡萄糖摄取能力检测(蓝色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Green UP02 葡萄糖摄取能力检测(绿色荧光)
Glucose(葡萄糖)摄取能力检测试剂盒-Red UP03 葡萄糖摄取能力检测(红色荧光)
Glucose Assay Kit-WST试剂盒 G264 葡萄糖含量检测
Lactate Assay Kit-WST试剂盒 L256 乳酸检测试剂盒
α-Ketoglutarate Assay Kit-Fluorometric K261 对细胞内的α-KG进行定量检测
脂肪酸摄取测定试剂盒——Fatty Acid Uptake Assay Kit UP07 脂肪酸摄取检测
Lipi-Blue试剂 LD01 脂滴检测(蓝色)
Lipi-Green试剂 LD02 脂滴检测(绿色)
Lipi-Red试剂 LD03 脂滴检测(红色)
Lipi-Deep Red试剂 LD04 脂滴检测(深红色)
Lipid Droplet Assay Kit-Blue试剂 LD05 脂滴荧光检测(蓝色)
Lipid Droplet Assay Kit-Deep Red试剂 LD06 脂滴荧光检测(深红色)
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence A552 检测细胞中ADP与ATP的比率
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒 E297 氧消耗量检测
Cell Counting Kit-Luminescence试剂盒 CK18 ATP活性检测
Glutamine Assay Kit-WST试剂盒 G268 谷氨酰胺的定量检测
Glutamate Assay Kit-WST试剂盒 G269 谷氨酸的定量检测
NAD/NADH Assay Kit-WST试剂盒 N509 NAD/NADH检测试剂盒
NADP/NADPH Assay Kit-WST试剂盒 N510 NADP/NADPH检测
氨基酸摄取能力检测试剂盒——Amino Acid Uptake Assay Kit UP04 检测细胞摄取氨基酸的能力
胱氨酸摄取能力检测试剂盒—Cystine Uptake Assay Kit UP05 胱氨酸摄取能力检测

各项代谢指标完全解读

糖酵解氧化磷酸化代谢关联指标

脂质代谢关联指标

氨基酸代谢关联指标

线粒体相关指标

衰老相关指标

 

当试图了解细胞状态时,分析各种细胞内代谢途径【例如糖酵解系统、三羧酸(TCA)循环、电子运输链等】非常重要。代谢产物和能量来源,【例如葡萄糖、乳酸和NAD(P)+/NAD(P)H】都是用于分析细胞内代谢的指标。

1677741453778688.png

 

细胞代谢与疾病

近年来,针对癌症、糖尿病等疾病模型的细胞内代谢研究受到了广泛关注。下面是不同疾病的 代谢指标变化的详细介绍。

1677741877723282.png

癌症

癌细胞在无限增殖的同时保持着活跃的细胞代谢,不断吸收大量的营养物质进行蛋白质、核酸、能量(如ATP)的合成。即使在不利的环境下(低氧气、低营养),癌细胞仍然可以通过改变代谢途径而存活下来。近年来,针对癌细胞的代谢途径的研究也越来越多。

1677742058611841.png

糖代谢有两种途径:线粒体氧化磷酸化和糖酵解(Glycolysis)。正常哺乳动物细胞在有氧条件下,糖酵解被抑制。而癌细胞即使在氧气充足的情况下,糖酵解仍然十分活跃(瓦格博效应,Warburg effect)。因此,癌细胞大量的摄取糖分并在亢进的糖酵解作用下大量产生乳酸。由于糖酵解途径在生成ATP时并不需要氧气,所以即使在低氧环境下,癌细胞仍然可以增殖。另一方面,癌细胞的线粒体利用氨基酸和脂肪产生NADH,NADH除了用于产生ATP以外,还主要用于抵御氧化还原作用。癌细胞的线粒体有着异常的机能,这会引起线粒体膜电位的上升(过极化)以及过剩的活性氧的产生。因此需要产生大量的谷胱甘肽来维持胞内的氧化还原平衡。而谷氨酰胺 (Glutamine)和胱氨酸(Cystine)是谷胱甘肽合成的必要来源,癌细胞不断的过量摄入这些氨基酸。另外,由于需要 NADPH来维持还原型谷胱甘肽,癌细胞会不断利用从糖酵解、戊糖磷酸途径(pentose phosphate pathway)以及线粒体产生的NADH来维持高浓度的NADPH。

*请注意,上述内容是概括性的癌细胞代谢特征的描述。随着癌细胞种类的不同和环境的变化会有一定差别。

参考文献

下面是一些癌细胞代谢的综述性文献,供初次接触这一领域的研究人员参考。

1) 糖酵解:M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation”, Science, 2009, 324, 1029.

2) 氨基酸代谢、ROS:P. Koppula, Y. Zhang, and B. Gan, “Amino Acid Transporter SLC7A11/xCT at the Crossroads of Regulating Redox Homeostasis and Nutrient Dependency of Cancer”, Cancer Commun., 2018, 38, 12.

3) 氨基酸代谢:E. L. Lieu, T. Nguyen, S. Rhyne, and J. Kim, “Amino Acids in Cancer”, Exp. Mol. Med., 2020, 52, 15.

4) 线粒体、ROS、NADPH:F. Ciccarese and V. Ciminale, “Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells”, Front. Oncol. 2017, 7, 117.

5) NADH:A. Chiarugi, C. Dolle, R. Felici, and M. Ziegler, “The NAD Metabolome-A Key Determinant of Cancer Cell Biology”, Nat. Rev. Cancer, 2012, 12, 741.

⚫ 葡萄糖(Glucose)代谢障碍与抗癌作用

⚫ 氨基酸代谢障碍和抗癌作用

⚫ 1个试剂盒,匀浆和非匀浆自由选择

⚫ 癌细胞免疫与代谢

抑制葡萄糖代谢和抗癌作用

1677742276337435.png

癌细胞主要使用糖酵解系统产生ATP,因此针对糖酵解系统的抗癌药物的开发已经进行了很长时间。目前还没有开发出有效的抗癌药物,但糖酵解仍然是癌细胞的主要药物靶点。因此,糖酵解是了解癌细胞代谢的最重要途径。

葡萄糖转运蛋白(GLUT)是药物发现中糖酵解靶蛋白的一个例子。由于癌细胞通过葡萄糖转运蛋白摄取大量的糖,因此可以通过直接抑制葡萄糖转运蛋白来抑制糖酵解。另外,抑制葡萄糖饥饿的活性、糖酵解系统的酶 (己激酶:HK、乳酸脱氢酶:LDH等) ,和抑制糖酵解系统的最终产物乳酸向细胞外的流出也是有效的手段。

各抑制剂引起的细胞内代谢变化.文献

1.png

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09

 

1677747352212328.png1.png

抑制氨基酸代谢与癌症治疗

1677742780857217.png

在增殖活跃的癌细胞中,氨基酸是蛋白质和核酸合成所必需的营养素。由于癌细胞中来自糖酵解系统的乙酰CoA的供给降低,因此积极利用氨基酸

作为TCA循环的营养源。研究表明,癌细胞通过氨基酸转运蛋白的表达量增加,吸收大量氨基酸。特别是谷氨酰胺是谷胱甘肽的原料和TCA循环中必需的α-酮戊二酸的来源,并且针对谷氨酰胺的摄取和代谢(谷氨酰胺分解)的药物开发备受关注。此外,我们发现与许多必需氨基酸摄取有关的氨基酸转运蛋白LAT(L-type amino acid transporter)在许多癌细胞中过度表达,并有望作为新的药物发现目标。
与其他氨基酸不同,氧化还原控制所需的半胱氨酸主要由胱氨酸转运蛋白xCT吸收到细胞中。癌细胞会产生大量的活性氧,从而增加抗氧化剂谷胱甘肽的产生,维持氧化还原平衡。因此,通过抑制谷胱甘肽产生的途径,可以改变细胞内氧化还原平衡,并诱导细胞死亡,如铁吞作用。此外,谷胱甘肽还有助于耐药性,因此涉及谷胱甘肽产生的途径是药物发展的主要目标。特别是最近,长期用作抗炎药的磺胺沙拉嗪和癌症的分子靶向治疗药物索拉非尼布抑制了xCT,通过xCT抑制的铁吞作用引起了人们的关注。

各抑制剂引起的细胞内代谢变化.文献

1677743552390529.png

关联产品

 

产品用途 产品名称
货号
NAD/NADH 检测试剂盒 NAD/NADH Assay Kit-WST N509
JC-1 线粒体膜电位检测试剂盒 JC-1 MitoMP Detection Kit MT09
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263
脂质过氧化物检测试剂 Liperfluo L248
线粒体过氧化物检测试剂 MitoPeDPP M466
自噬检测试剂 DAPGreen – Autophagy Detection D676

抑制脂肪酸代谢和抗癌作用

1677743222387713.png

细胞增殖活跃的癌细胞当然需要大量的脂质。因此,细胞内的脂肪酸合成和细胞外的脂肪酸摄取是很活跃的。因此,许多癌细胞增加了脂质滴的积累。针对癌细胞的治疗目标主要是与脂肪酸的产生相关的途径,并开发了许多抑制剂。

另一方面,癌细胞利用脂肪酸的β氧化来有效地产生能量,以补充糖酵解系统低效能量的产生。因此,以脂肪酸的β氧化为目标的药剂开发也在进行中。

各抑制剂引起的细胞内代谢变化.文献

1.png

关联产品

 

产品用途 产品名称
货号
脂滴检测试剂盒  Lipid Droplet Assay Kit

– Blue/Deep Red

LD05/LD06
脂滴荧光染料 Lipi-Blue/Green/Red/Deep Red LD01/LD02/LD03/LD04
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST  N510
GSSG/GSH检测试剂盒 GSSG/GSH Quantification Kit G263

癌症免疫治疗与细胞代谢

1677744869169689.png

T细胞在消除癌细胞的免疫系统中起着核心的作用。近年来发现,T细胞的分化和活化等调节机制也与细胞内的代谢有关,因此癌症免疫相关的代谢研究也越发活跃起来。癌细胞需要吸收大量营养才能维持增殖活性,而活化的T细胞同样需要大量营养(尤其是葡萄糖)才能消除癌细胞。所以,活化的T细胞与癌细胞存在局部的“葡萄糖竞争”。众所周知,癌细胞可以通过表达活性化T细胞表面的免疫检查点PD-1来抑制T细胞的活性。而且,最近的研究发现,在这个相互作用中,T细胞的葡萄糖摄取也会受到抑制。癌细胞通过抑制免疫细胞的代谢来获得免疫逃逸,因此癌症免疫方面的研究并不局限于癌细胞,对免疫细胞的代谢研究也十分重要。

参考文献 

1) Z. Yin, L. Bai, W. Li, T. Zheng, H. Tian, and J. Cui, “Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic stratety”, J. Exp. Clin. Cancer Res. 2019, 38, 403.

2) L. Almeida, M. Lochner, L. Berod, and T. Sparwasser, “Metabolic pathways in T cell activation and linear differentiation”, Semin. Immunol. 2016, 28(5), 514.

3) A. Kumar and K. Chamoto, “Immune metabolism in PD-1 blockage-based cancer immunotherapy”, Int. Immunol., 2020 Jul 5;dxaa046.

4) D. G. Franchina, F. He, and D. Brenner, “Survival of the fittest: Cancer challenges T cell metabolism”, Cancer Lett., 2018, 412, 216.

5) N. Patsoukis, K. Bardhan, P. Chatterjee, D. Sari, B. Liu, L. N. Bell, E. D. Karoly, G. J. Freeman, V. Petkova, P. Seth, L. Li, and V. A. Boussiotis, “PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation”, Nat. Commun., 2015, 6, 6692.

各抑制剂引起的细胞内代谢变化.文献

1.png

关联产品

 

产品用途 产品名称
货号
葡萄糖检测试剂盒 Glucose Assay Kit-WST G264
乳酸检测试剂盒 Lactate Assay Kit-WST L256
谷氨酰胺检测试剂盒 Glutamine Assay Kit-WST G268
谷氨酸检测试剂盒 Glutamate Assay Kit-WST G269

糖尿病

抑制葡萄糖代谢和抗癌作用

1677745491380258.png

在高血糖状态下,细胞内葡萄糖浓度升高,多元醇途径代谢增强。这会过 度消耗NADPH,减少还原型谷胱甘肽(GSH)。 其结果是,氧化应激增加,促进细胞损伤。

参考文献 

M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism”, DIABETES, 2005, 54, 1615.

关联产品

 

产品用途 产品名称
货号
NAD/NADH检测试剂盒  NAD/NADH Assay Kit-WST N509
NADP/NADPH 检测试剂盒 NADP/NADPH Assay Kit-WST N510
谷胱甘肽检测试剂盒 GSSG/GSH Quantification Kit G263

衰老

 

⚫ 衰老相关疾病与乳酸、NAD+的关系

⚫ DNA损伤引发的细胞衰老

⚫ 谷氨酰胺代谢与细胞衰老

衰老相关疾病与乳酸、NAD +的关系

1677745766688162.png

近年来,NAD+与衰老之间的关系 引起了人们的关注。单个小鼠的 衰老模型中,在肝脏等中观察到 的NAD+量减少1),并且据报道, 抑制NAD +合成酶会导致衰老细胞 功能下降2)。此外,NAD+量的减 少导致线粒体功能下降3),而线粒 体功能的降低表明NAD+量减少, 从而导致衰老细胞的功能下降4)。

DNA损伤引发的细胞衰老

1677745835650665.png

在衰老的细胞中,由于线粒体功能下 降,主要由厌氧的糖酵解通路产生ATP, 因此乳酸的产生量增加7)。 DNA损伤是细胞衰老导致线粒体功能 障碍的原因之一。 DNA损伤的积累会激活 DNA修复机制并增加NAD+消耗。 NAD+量的减少会降低SIRT1活性,这 是维持线粒体功能的重要因素,导致线粒 体功能的降低(电子转移的抑制→ATP产 生/ NAD+量的减少)3),8)。

谷氨酰胺代谢和细胞衰老

抑制肿瘤的menin通过靶向依赖mTORC1的代谢激活来预防效应CD8T细胞功能障碍9)。

Menin是一种肿瘤抑制因子,在预防衰老和疲劳等T细胞功能障碍中起着重要作用。当Menin缺乏时, mTORC1被激活,并通过糖酵解系统和谷氨酰胺降解增强氧化磷酸化,导致CD8T细胞功能障碍。此外, 谷氨酰胺代谢中间产物α酮戊二酸有助于维持mTORC1激活和促进细胞衰老(SA-β-gal活性增强)。谷氨酰 胺-α-酮戊二酸通路在诱导CD8T细胞功能障碍中发挥重要作用,并发现Menin有抑制T细胞衰老的可能性。

1677745957608168.png

关联产品

 

产品用途 产品名称
货号
细胞衰老检测试剂盒 (荧光显微镜 / 流式细胞仪用)  Cellular Senescence Detection Kit – SPiDER-βGal SG03
细胞衰老检测试剂盒 (荧光酶标仪用) Cellular Senescence Plate Assay Kit – SPiDER-βGal SG05
JC-1 线粒体膜电位检测试剂盒  JC-1 MitoMP Detection Kit MT09

NADP/NADPH Assay Kit-WST试剂盒货号:N510

NADP/NADPH Assay Kit-WST试剂盒货号:N510
NADP/NADPH检测试剂盒
NADP/NADPH Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 数据可靠,不会与NAD+及NADH反应

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests
现货
产品解说
活动进行中
试剂盒内含
概述
原理
技术资料
操作步骤
实验例
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    Lactate Assay Kit-WST    乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

试剂盒内含

1611186779448168.jpg

概述

烟酰胺腺嘌呤二核苷酸磷酸(NADP) 是磷酸戊糖途径(一种细胞代谢途径)反应中一种重要的辅因子。NADP以氧化态NADP+和还原态NADPH的形式存在于细胞中。NADPH不光对脂肪酸、胆固醇而且对还原型谷胱甘肽的生成至关重要。另外最近的研究表明,NADP+/NADPH通过限制碳水化合物的摄入来延长寿命与NADP+/NADPH有很大关联。

NADP/NADPH Assay Kit-WST能定量检测细胞中总NADP+/NADPH、NADPH和NADP+的量,并计算它们的比值。细胞内NADPH水平可以用试剂盒内的Extraction Buffer裂解细胞后加热进行定量检测。而细胞内的NADP+水平则可以通过总NADP+/NADPH减去NADPH的量计算得到。

原理

1611188214208217.jpg

技术资料

分别检测NADP+和NADPH

1622538182624823.jpg

分别测定NADP+和NADPH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。 通过加热细胞裂解液能单独检测细胞内NADPH量,而细胞内的NADP+量则可以通过总NADP+/NADPH量减去NADPH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准样品。使用超过12个样品时,您需要准备单独的超滤管。

使用NADP+/NADPH作为标记的研究

1622538301925754.jpg

检索来源:Google Scholar

检索关键词:

NADP/NADPH:“NADP/NADPH”

线粒体:”NADP/NADPH”Mitochondria

癌:”NADP/NADPH”Cancer

氧化应激:”NADP/NADPH”Oxidative Stress

孔板检测中数据的可靠性

通过同时检测试剂盒内的标准溶液,可以对浓度在0.01-1 μmol/l的总NADP+/NADPH和NADPH进行定量。如果样品中的总NADP+/NADPH的浓度>1 μmol/l,可以通过稀释样品来调节。实验证实本试剂盒(NADP/NADPH Assay Kit-WST)不会与NAD+及NADH反应。

1622538475403958.jpg

操作步骤

(1)按下图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

1622538669213787.jpg

 

(2)在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3)在37°C培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4)用酶标仪在450 nm处检测吸光度。

(5)用标准曲线测定样品中总NADP+/NADPH和NADPH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NADP+的量可用下列计算公式计算:总NADP+/NADPH-NADPH的量计算得到。

NADP+=总NADP+/NADPH-NADPH

实验例

细胞样品检测实验例 (加入抗癌药物Doxorubicin)

向Jucket细胞中 (3×106 cells)加入终浓度为500 nmol/l的Doxorubicin (Dox),在培养24 h后检测NADP+/NADPH 比值和还原型/氧化型谷胱甘肽的比值(GSH/GSSG)。用本试剂盒检测PBS清洗后的细胞的NADP+/NADPH比值,用 GSSG/GSH Quantification Kit II (货号:G263) 检测谷胱甘肽的比值。

在细胞内加入DOX后,产生的ROS(H2O2) 破坏了DNA、DNA修复酶 (PARP*) 被激活, 并且NADP+被其消耗。为了补充不足的NADP+,NADPH氧化酶被激活,结果在数据中则会表现为NADP+的增加。与此同时还原型谷胱甘肽 (GSH) 会被产生的ROS所消耗,因此GSH/GSSG的比值会下降。

1622538702215850.jpg

常见问题Q&A

Q1:该试剂盒可以检测多少个样本?
A1:

1622538792123681.jpg

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:可以单独购买过滤管吗?
A2:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q3:工作液稳定吗?
A3:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q4:样品颜色没有变化,是什么原因?
A4:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

参考文献

编号 文献 IF
1 Order-of-magnitude   enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer   membrane deprivation 2022 17.7
2 Targeted   therapy for drug-tolerant persister cells after imatinib
treatment for gastrointestinal stromal tumours
2021 9.1
3 Impact   of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of   intractable hematological malignancy in humans 2022 7.4
4 Chemical   Triggering Cyanobacterial Glycogen Accumulation: Methyl Viologen Treatment   Increases Synechocystis sp. PCC 6803 Glycogen Storage by Enhancing Levels of   Gene Transcript and Substrates in Glycogen Synthesis 2022 4.9
5 Glucose   Limitation Sensitizes Cancer Cells to Selenite-Induced Cytotoxicity via   SLC7A11-Mediated Redox Collapse, Cancers (Basel),2022, 14(2):345 2022 4.4
6 Inhibition   of NAMPT markedly enhances plasma-activated medium-induced
cell death in human breast cancer MDA-MB-231 cells
2019 4.1
7 Metabolomic   approach to characterize the metabolic phenotypes and varied response to   ouabain of diffuse large B-cell lymphoma cells 2021 2.9
8 Effect   of Phosphoribosyltransferase Down-regulation on Malignant Glioma Cell   Characteristics 2020 2.5

α-Ketoglutarate Assay Kit-Fluorometric货号:K261

α-Ketoglutarate Assay Kit-Fluorometric货号:K261
α-酮戊二酸(α-KG)检测试剂盒(荧光法)
α-Ketoglutarate Assay Kit-Fluorometric
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

 

● 检测结果的重现性好

● 可作为线粒体活性的指标

● 多角度了解细胞代谢变化

下载说明书
学习资料
选择规格:
100tests
现货
规格性状
产品概述
检测原理
检测操作
标准曲线的作成例
实验例
常见问题Q&A

规格性状

100 tests     ・Fluorescent Dye
・α-KG   Standard
・Enzyme Mix
・Coenzyme
・Assay Buffer
・lysis Solution
・Control Buffer
・ALT   Solution
・Reaction Buffer
×1
300 μl×1
×1
×1
6.5 ml×1
2 ml×1
25 ml×1
35 μl×1
5 ml×1

产品概述

α-酮戊二酸(α-KG)是TCA循环中重要的中间体。它被作为进入TCA循环的葡萄糖代谢物增加的指标以及谷氨酰胺代谢(Glutaminolysis,一种谷氨酰胺底物与α-KG反应的通路)增加的指标。α-KG在神经递质谷氨酸和γ-氨基丁酸(GABA)的产生中起着重要作用,不仅如此它还担负着一定的清除细胞内的活性氧的功能,是非常重要的细胞代谢指标之一。

检测原理

α-Ketoglutarate Assay Kit-Fluorometric可以定量检测α-酮戊二酸(α-KG)。通过检测反应生成的试卤灵(Resorufin)的荧光(Ex:530 – 560 nm、Em:580 – 600 nm)对细胞内的α-KG进行定量。另外,本试剂盒还可以通过使用96孔板进行多样品检测。

1648716960519343.jpg

检测操作

整个操作过程,从细胞的前处理到荧光酶标仪检测,只需要按照操作说明书的步骤添加试剂即可检测细胞内α-酮戊二酸(α-KG)的浓度。而且,本试剂盒专门针对同类型检测方法中普遍存在的结果重现性差的问题进行了优化,即使是第一次做α-KG检测实验的科研人员也可以放心使用。

► 结果重现性高的两个秘诀

1) 样品的前处理

1648717117113502.png

同类型的检测试剂盒在样品前处理时需要微量的pH调节、过滤膜过滤等操作,这是导致结果重现性差的原因之一。而同仁化学研究所的α-KG检测试剂盒,只需要按照说明书添加试剂,可以大幅减少前处理过程中产生的操作误差。

2) α-Ketoglutarate的检测

1648717303611794.png

其他检测试剂盒使用与上图相同的原理,但是由于①和②的两步反应同时在96孔板里进行,这是造成误差的另一个重要原因。而同仁化学研究所的试剂盒将这两步反应分开进行,进一步降低了误差。

标准曲线的作成例

本试剂盒附带α-KG的标准品,可以通过制作标准曲线来定量的检测样品中的α-KG浓度。如果样品中的α-KG浓度高于20 μmol/l,请预先稀释样品再检测。

图片5.jpg

实验例

Doxorubicin(DOX)刺激引起的细胞内代谢变化

阿霉素(Doxorubicin, DOX)可以作用于 细胞周期的G2/M期,停止细胞的增殖并且细胞衰老,利用DOX作用于A549细胞,会导致胞内α-KG浓度增加。另外通过SG 03 Cellular Senescence Detection Kit – SPiDER-βGal检测细胞衰老、C548 Cell Cycle Assay Solution Deep Red / C549 Cell Cycle Assay Solution Blue检测细胞周期、MT09 JC-1 MitoMP Detection Kit检测线粒体膜电位的结果如下:

image.png

图片8.png

 

1648718544826538.png1648718550521530.png

Sulfasalazine(SSZ)引起的细胞内代谢变化

Sulfasalazine(SSZ)可以抑制细胞的胱氨酸/谷氨酸转运体(xCT)。用SSZ刺激A549细胞后,细胞内的α-KG、ATP、GSH、细胞放出的谷氨酸等变化用下列方法进行了检测。结果发现,SSZ刺激后细胞内的ATP、谷胱甘肽(GSH)、谷氨酸的放出量均减少,而细胞内的α-KG和ROS水平增加。1648718906334129.jpg

<使用产品>

・细胞内ATP:CK18 Cell Counting Kit-Luminescence

・细胞内GSH:G263 GSSG/GSH Quantification Kit II

・细胞内ROS:R252 ROS Assay Kit -Highly Sensitive DCFH-DA-

・胞外谷氨酸:G269 Glutamate Assay Kit-WST

 

 

<实验条件>

细胞:A549细胞(1 x 106 cells) 暴露时间: 48 h

 

图片5.png

参考文献) Shogo Okazaki et al., “Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”. Cancer Sci., 2019, doi:10.1111/cas.14182.

NASH诱导小鼠的肝脏组织的代谢变化

NASH(非酒精性脂肪肝)的病变组织中有ATP、α-KG、NAD的量减少的特点。使用4周龄的高脂肪食物投喂(引发NASH)的1型糖尿病模型小鼠(STAM模型)的肝脏组织,检测其中的ATP、α-KG、NAD水平的变化。结果显示,NASH诱导后10周龄的小鼠组中ATP、α-KG、NAD的浓度降低。

1648776699547364.png

※详细的实验步骤请参考FAQ“是否有检测组织的实验例

 

<使用产品>

 

・组织内ATP:CK18 Cell Counting Kit-Luminescence

・组织内NAD:N509 NAD/NADH Assay Kit-WST

 

<实验参考文献>

 

ATP Francesco   Bellanti, et al., “Synergistic   interaction of fatty acids and oxysterols impairs mitochondrial function and   limits liver adaptation during nafld   progression”, Redox Biology, 2018, 15, 86-96.
α-KG Jianjian   Zhao, et al., “The   mechanism and role of intracellular α-ketoglutarate reduction in hepatic   stellate cell activation”, Bioscience Reports, 2020, 40, (3).
Ali Canbay, et al., “L‑Ornithine   L‑Aspartate (LOLA) as a Novel Approach for Therapy of Non‑alcoholic Fatty   Liver Disease”, Drugs, 2019, 79, 39-44.
NAD Jinhan   He, et al., “Activation   of the Aryl Hydrocarbon Receptor Sensitizes Mice to Nonalcoholic   Steatohepatitis by Deactivating Mitochondrial Sirtuin Deacetylase   Sirt3”, Mol.   and Cell. Biol., 2013, 33, (10),   2047-55.

常见问题Q&A

Q1:每个试剂盒可以检测所少个样品?
A1:如果标准曲线和样品都采用3个复孔来计算,可以检测12个样品。具体的96孔板的样品孔排列实例请见说明书。

 

Q2:是否可以用黑色孔板以外的孔板(透明板或白色板)?
A2:用透明板或白色板无法准确的绘制标准曲线,请使用黑色96孔板进行实验

 

Q3:检测时样品没有显色,可能的原因有哪些?
A3:本试剂盒对α-KG的检测范围是0.2 μmol/l以上,样品中的α-KG浓度如果低于0.2 μmol/l无法检测出来。可以尝试降低样品前处理时的稀释倍率。
Q:配置好的Working Solution能否保存?
A:配置好的Working solution无法保存,请现配现用。另外,Working solution遇光不稳定,配制好后请用铝箔纸包裹避光。※避光、室温的条件下可保存2小时左右。
Q:检测样品是否可以保存?
A:操作说明书上的“—定量细胞内α-KG的样品制备—”的步骤5中得到的前处理样品在-20℃可以保存10天。冷冻保存后的样品会发生沉淀,请离心后取上清作为检测样品。※加入20 μl Lysis solution, 吹打混匀后8,000xg离心10 min,取上清。
Q:是否有组织样品的检测实例?
A:有小鼠肝脏组织的检测实例。

具体的实验步骤如下:

 

碱性提取法提取的肝脏样品中的代谢指标检测

 

1.取大约100 mg小鼠肝脏组织样品加至500μl预冷的0.5 mol/ KOH水溶液中。

※必须使用经过灌流操作完全脱血的组织样品,否则残留的血液会影响检测结果。

2.用Dounce型组织研磨器研磨肝脏组织。

3.将研磨后的样品回收至微管中,用500μl预冷的0.5 mol/ KOH水溶液清洗研磨器,并将清洗后的液体也

一起转移到回收样品的微管中(共约1 ml)。

4.向回收样品的微管中加入1 ml预冷的超纯水,充分混合后在冰浴上静置5 min(共约2 ml)。

※由于溶液的粘性较高,有时会出现离心后难以分离的情况。此时,用25 g左右的细针头注射器不断

吸取/推出(大约20-30次),直到可以顺畅的吹打溶液为止。

5.离心机12,000xg,4 ℃离心5 min。

α-KG检测用样品的制备

 

6.取900μl上一步操作(步骤5)得到的溶液,加入200μl 1mol/l KH2PO4水溶液进行中和,混匀后在冰浴上

静置5 min。

7.离心机12,000xg,4 ℃离心5 min,取1 ml上清液至新的微管中作为检测样品。

 

<检测时的注意事项>

※组织提取的样品无法保存,请在当天内完成检测。

※枪头中残留的样品溶液时造成误差的原因之一,吸取样品溶液时尽量缓慢,减少枪头中残留的样品溶液。

※在稀释标准品和样品的时候,使用0.5 mol/l KOH水溶液和1mol/l KH2PO4水溶液按照9:5比率混合的溶液。

 

<检测实例>

诱导非酒精性脂肪肝的小鼠肝脏组中α-KG量的变化

1648777907404487.png

NAD/NADH Assay Kit-WST试剂盒货号:N509

NAD/NADH Assay Kit-WST试剂盒货号:N509
NAD/NADH检测试剂盒
NAD/NADH Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 数据可靠,不会与NADP及NADPH反应

● 同一样品可以用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量

● 只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

● 享有显色底物WST专利

选择规格:
100 tests
现货
产品解说
活动进行中
试剂盒内含
概述
原理
技术情报
操作步骤
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测  

NO.4.    Lactate Assay Kit-WST     乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

试剂盒内含

1608705795285154.jpg

概述

烟酰胺腺嘌呤二核苷酸(NAD)是参与糖酵解、电子转移系统和TCA循环等细胞主要代谢途径氧化还原反应的重要辅助因子。NAD以氧化型NAD+和还原型NADH的形式存在于细胞中。维持适当的NAD+和NADH水平对细胞功能至关重要。此外最近的研究表明NAD+水平的下降与衰老相关,NAD+的量被认为是衰老相关研究的一个标志。

NAD/NADH检测试剂盒可以定量细胞中NAD+/NADH、NADH和NAD+的量,并测量它们的比值。细胞内NADH水平可以通过试剂盒内含的Extraction Buffer裂解细胞并在加热后选择性地定量检测。而细胞内的NAD+水平则可以通过总的NAD+/NADH总量减去NADH量计算得到。

原理

1608706558990000.jpg

技术情报

NAD+和NADH的分别检测

1622533065688766.jpg

分别测定NAD+和NADH的操作步骤

*只有Dojindo的试剂盒中带有可以简单去除蛋白质的微量管

用试剂盒内的提取缓冲液及去除蛋白质用的微量管,能简便地制备细胞裂解液。通过加热细胞裂解液能单独检测细胞内的NADH量。而细胞内的NAD+量则可以通过总NAD+/NADH量减去NADH量的计算得到。

在本试剂盒中,当n=3时,可以测量12个样品和8个标准品。当使用超过12个样品时,您需要准备单独的微量管。

使用NAD+/NADH作为指标的研究

细胞中NAD+和NADH的量被评估为重要的代谢指标,用于了解受药物管理和基因重组影响的癌细胞和线粒体功能。最近已经明确了长寿相关的受体与NAD+的含量密切相关。越来越多的人将其评估为肥胖,糖尿病和细胞分化等生物学状况的标志物。

1622533183634875.jpg

检索来源:Google Scholar

检索关键词:

NAD/NADH    :  “NAD/NADH”

线粒体             :“NAD/NADH”Mitochondria

癌                    :“NAD/NADH”Cancer

肥胖                 :“NAD/NADH”Obesity

孔板检测中数据的可靠性

可以通过同时测量该试剂盒中包含的标准溶液来进行定量分析。如果样品中NAD+/NADH的总含量高于2 μmol/l,则可以通过稀释样品进行评估。在下面的实验中,使用细胞数相差2倍的HeLa细胞,来确定NAD+和NADH的数量和比率。

 

1622533523559464.jpg

使用增殖培养的HeLa细胞(2.5×105,5.0×105个细胞),从标准曲线中得到细胞内NAD+和NADH的量。最终NAD+的量和NADH的量会随着细胞数而改变,但是即使细胞数改变,NAD+和NADH量的比率也不变。

经确认,将2-Deoxy-D-glucose加入到HeLa 细胞后,代谢活性发生了变化。

用乳酸检测试剂盒检测的实验例

1622533577124364.jpg

向HeLa细胞(1×106细胞)中加入2-Deoxy-D-glucose,终浓度为6 mmol/l,培养24小时后测定乳酸量和NAD+/NADH比。用Lactate Assay Kit-WST(货号:L256)测定上清液中乳酸含量,去除上清后用本试剂盒检测细胞中的NAD+/NADH比。

最终加入2-Deoxy-D-glucose抑制了细胞内糖酵解系统,并导致乳酸量的减少和NAD+/NADH比率的增加。

实验例:NASH诱导小鼠肝脏组织中代谢的变化

非酒精性脂肪肝炎(NASH)病变导致组织中ATP、α-酮戊二酸(α-KG),已知NAD量减少。使用从4周龄开始进行高脂肪饮食处理   (NASH诱导)的1型糖尿病模型小鼠(STAM模型)的肝脏组织α-测量了KG、NAD量。其结果,在NASH诱导后10周龄小鼠组织

非酒精性脂肪肝炎(NASH)病变导致组织中ATP、α-酮戊二酸(α-KG),已知NAD量减少。使用从4周龄开始进行高脂肪饮食处理 (NASH诱导)的1型糖尿病模型小鼠(STAM模型)的肝脏组织α-测量了KG、NAD量。其结果,在NASH诱导后10

中α-确认KG、NAD量减少。

image.png

 

<使用产品>

・组织内ATP:ATP Assay Kit-Luminescence(产品货号:A550)

・组织内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(产品货号:K261)

・组织内NAD:NAD/NADH Assay Kit-WST(产品货号:N509)

<実験参考文献>

ATP  Francesco Bellanti, et al., “Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression”, Redox Biology, 2018, 15, 86-96..

α-KG   Jianjian Zhao, et al., “The mechanism and role of intracellular α-ketoglutarate reduction in hepatic stellate cell activation”, Bioscience Reports, 2020, 40, (3).

Ali Canbay, et al., “L‑Ornithine L‑Aspartate (LOLA) as a Novel Approach for Therapy of Non‑alcoholic Fatty Liver Disease”, Drugs, 2019, 79, 39-44.

NAD   Jinhan He, et al., “Activation of the Aryl Hydrocarbon Receptor Sensitizes Mice to Nonalcoholic Steatohepatitis by Deactivating Mitochondrial Sirtuin Deacetylase Sirt3”, Mol. and Cell. Biol., 2013, 33, (10), 2047-55.

实验例:脂肪酸转运抑制剂引起的HeLa细胞细胞内代谢的変化

脂肪酸对膜的合成等重要,细胞的增殖不可缺少。因此,用脂肪酸转运体抑制剂处理HeLa细胞,确认了阻碍脂肪酸摄取时的细胞增殖能力及细胞内代谢(葡萄糖消耗量、Lactate释放量、NAD/NADH比率)的变化。

结果显示,细胞增殖能力下降,但葡萄糖消耗量和Lactate释放量增加,细胞内NAD+/NDH比率下降,因此确认了代谢途径向解糖类转移。

image.png

 

<使用产品>

脂肪酸摄取:Fatty Acid Uptake Assay Kit (产品货号:UP07)

细胞增殖:    Cell Counting Kit-8 (产品货号:CK04)

Glucose摄取:Glucose Assay Kit-WST (产品货号:G264)

Lactate检测:Lactate Assay Kit-WST (产品货号:L256)

实验例:诱导老化引起的A549细胞的代谢移位

 

当细胞老化被诱导时,SA-β-除了出现gal的表达亢进和不可逆的细胞增殖停止的现象以外,DNA损伤积蓄了的老化细胞,由于线粒体功能的降低能源产生转移到解糖系。

因此,用Doxorubicin处理A549细胞,诱导老化时的SA-β-确认了gal表达亢进及能量产生途径(NAD量、线粒体膜电位、ATP量、Lactate释放量)的偏移。

结果发现DNA损伤,SA-β-刚度测量-β- Galactosidase)生产量增加,细胞内NAD+量下降,线粒体膜电位下降,能量生产途径从氧化性磷酸化转移到解糖系

image.png

<使用产品>

DNA损伤:DNA Damage Detection Kit – γH2AX (产品货号:G265)

SA-β-gal检测:Cellular Senescence Detection Kit – SPiDER-βGal (产品货号:SG03)

NAD+量:NAD/NADH Assay Kit-WST (产品货号:N509)

线粒体膜电位:JC-1 MitoMP Detection Kit (产品货号:MT09)

糖酵解/氧化磷酸化:Glycolysis/OXPHOS Assay Kit (产品货号:G270)

操作步骤

1622533956148525.jpg

(1) 按照上图,在每孔中分别加入50 μl的标准液和样品溶液。

※为了获得准确的数据,建议每个样品做3个复孔。

(2) 在每孔中加入50 μl Working Solution。

※由于在加入Working Solution后酶会立刻反应,请用多通道移液器以减少由于加液时间延迟而导致的实验误差。

(3) 在37℃培养60 min。

※培养时请密封培养板,以防止液体蒸发。

(4) 用酶标仪在450 nm处检测吸光度。

(5) 用标准曲线测定样品中总NAD+/NADH和NADH的量。

※如果原样品在检测前已稀释,可用稀释倍率乘以检测的数值。

※NAD+的量可用总NAD+/NADH的量-NADH的量计算得到

NAD+= 总NAD+/NADH-NADH

1611124192642580.jpg

常见问题Q&A

 

Q1:试剂盒可以测量多少个样本?
A1:

1622534008629299.jpg

*所有样品均测定3次(n=3)

上表中显示了当标准样品从2 μmol/l连续稀释,作出一条共计8个点(n=3)的标准曲线时可以检测的样品数量。如果分为2次检测,由于需要重复做一条标准曲线,因此样品检测的数量会更少。

Q2:是否可以使用450 nm以外的滤光片进行测量?
A2:也可以使用490 nm的滤光片,但是吸光度会低于在450 nm处的吸光度。当用不同滤光片检测时,校准曲线如下:

1622534040768583.jpg

Q3:可以单独购买过滤管吗?
A3:不可以,我们不单独出售过滤管。如果需要其他耗材,可以使用市场上售卖的过滤管。
Q4:工作液稳定吗?
A4:工作液无法长期保存。请在使用前配制工作液,由于工作液对光敏感请注意避光。该工作液在室温下可避光保存4小时。
Q5:样品颜色没有变化,是什么原因?
A5:样品中的NAD含量可能低于使用此试剂盒可测定的检测限度,在这种情况下,请增加细胞数,或者如果检测样品被稀释,则在检测前降低稀释比例。

Q6:有使用组织的实验例子吗?

 

A6:我们已经用小鼠肝组织测量了NAD/NADH和ATP,有关实验操作的更多信息,请参见下文。

碱性提取法提取肝脏代谢指标

1.每100毫克小鼠肝脏500毫升500摩尔/升KOH的冷水。

请务必将纸巾彻底沥干。残余血液会影响测量。

2.它被向下型均化器粉碎。

*请去冰浴。

3.用500ml冷的0.5mol/l KOH水溶液共同洗涤用于破碎的容器,以匹配管中的样品。(共1毫升)

4.向样品管中加入1毫升冷的超纯水。(共2毫升)如果溶液的粘度高,操作后可能难以分离离心机。

在这种情况下,将25g(针的针数)的细针应用于注射器,并混合(20-30次),直到样品溶液顺利放入注射器。

5.在5000 x g,4°C下离心5分钟,上清液回收到两个900 mm L的样品管中。1个NAD/NADH测量和另一个用于ATP测量。NAD/NA

 

 

NAD/NADH测量样品的制备

将0.5mol/L KOH水溶液和1mol/L KH2PO4混合制备稀释溶液。KH2PO4水溶液,比例为9:5。

 

6.将样品转移到MWCO 10K膜沉积管中,并在15000xg下离心20分钟。

*如果溶液超过200克或更多,请延长离心时间。

7.将所得滤液加入1.5 ml微管μ中,转移总NAD+/NADH含量和NADH量样品。

8.NADH量测量样品在60°C下孵育60分钟,将样品冷却至室温。

9.中和完成后,加入1mol/L的KH2PO4。22μL放入装有总NAD+/NADH量和制备后NADH量测量样品的管中,

中和溶液,加入78ml稀溶液(KOH和KH2PO4),混合混合物,将样品用作测量样品(总计200ul)。

<测定例>

NASH诱导小鼠肝脏组织中NAD量的变化

NASH_soshiki_NAD.png

 

Q7:测量样品可以保存吗?

A7.可以保存。使用说明书(1.测定用样品的调制的操作6)的溶液,在冷冻(-20℃)下可以保存3周。

参考文献

编号 文献 IF
1 Restoring   NAD+ by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and   UVB-irradiated epidermal keratinocytes 2021 6.8
2 Rewired   Cellular Metabolic Profiles in Response to Metformin under Different Oxygen   and Nutrient Conditions, International Journal of Molecular Sciences,2022,   23(2):989 2022 5.9
3 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells,   Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 5.3
4 Nicotinamide   Attenuates the Progression of Renal Failure in a Mouse Model of   Adenine-Induced Chronic Kidney Disease 2021 5.1
5 Impact   of Nuclear De Novo NAD+ Synthesis via Histone Dynamics on DNA Repair during   Cellular Senescence To Prevent Tumorigenesis 2022 5.1
6 Role   of pyruvate in maintaining cell viability and energy production under   high-glucose conditions 2021 4.9
7 Kynurenine,   3-OH-kynurenine, and anthranilate are nutrient metabolites that alter H3K4   trimethylation and H2AS40 O-GlcNAcylation at hypothalamus-related loci 2019 4.9
8 Porcine   placental extract increase the cellular NAD levels in human epidermal   keratinocytes 2022 4.9
9 Nicaraven   induces programmed cell death by distinct mechanisms according to the   expression levels of Bcl-2 and poly (ADP-ribose) glycohydrolase in cancer   cells 2022 4.8
10 Effects   of sirtuins on the riboflavin production in Ashbya gossypii 2021 4.8
11 SIRT7   regulates the nuclear export of NF-κB p65 by deacetylating Ran, Biochimica et   Biophysica Acta – Molecular Cell Research,2019, 1866(9):1355-1367 2019 4.7
12 Epigenetic   silencing of Lgr5 induces senescence of intestinal epithelial organoids   during the process of aging,NPJ Aging and Mechanisms of Disease,2018, 5:1 2018 4.3
13 Effect of fumaric acid on the growth   of Lactobacillus delbrueckii ssp. bulgaricus during yogurt   fermentation 2021 4.2
14 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells,   Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 4.1
15 High   expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity   of a NAMPT inhibitor, The European Journal of Pharmacology,2019, 865:172738 2019 3.0
16 Lactic   acid induces HSPA1A expression through ERK1/2 activation 2022 2.4
17 Contribution   of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy   metabolism and the stemness in CD133-positive HuH-7 cells, Genes to   Cells,2020, 25(2):139-148 2020 1.9

Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269
谷氨酸的定量检测试剂盒
Glutamate Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamate的定量

选择规格:
1set
现货
 
活动进行中
试剂盒内含
产品概述
原理
操作步骤
实验例
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glutamine Assay Kit-WST    谷氨酰胺的定量检测

NO.3.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

1607220085966457.png

产品概述

谷氨酸不仅用于蛋白质和谷胱甘肽的生物合成,而且还作为神经递质发挥重要作用,谷氨酸过多被认为是引起神经退行性疾病如阿尔茨海默氏病的原因。根据文献报道,胱氨酸/谷氨酸的转运蛋白(xCT)具有吸收胱氨酸放出谷氨酸的功能,而抑制xCT会诱导细胞发生铁依赖性的死亡—铁死亡,近年来针对xCT的癌症研究越来越多。

Glutamate Assay Kit-WST是谷氨酸的定量检测试剂盒。细胞培养基中或细胞内的谷氨酸都可以通过WST的还原反应进行定量,谷氨酸定量的最低浓度为5 μmol/l。此外,本试剂盒还可以使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酸进行定量。此外,本试剂盒还包含谷氨酸标准溶液,可用于通过制作标准曲线来定量样品中谷氨酸的浓度。

 

image.png

操作步骤

只需将细胞培养上清液或组织/细胞裂解溶液转移到孔板中,加入试剂后孵育即可。

image.png

实验例

标准曲线的实验例:

样品中的谷氨酸浓度可通过使用该试剂盒的谷氨酸标准溶液制作标准曲线来确定。如果谷氨酸浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

1609314887231458.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

image.png

铁死亡研究中谷氨酸和谷胱甘肽的检测实验例:

据报道通过弹性蛋白,抑制胱氨酸/谷氨酸转运体(xCT)造成铁依赖性的细胞死亡,即细胞铁死亡。在通过弹性蛋白处理后的A549细胞中,确认谷氨酸的释放量和细胞内谷胱甘肽的量。结果显示,通过弹性蛋白处理的细胞中谷氨酸释放的量减少,抑制胱氨酸的摄取,从而导致谷胱甘肽的量减少。

image.png

Sulfasalazine (SSZ) 引起的细胞内代谢变化实验例:

将已知会抑制胱氨酸/谷氨酸转运体(xCT)的Sulfasalazine(SSZ)加入到A549细胞后,确认谷氨酸释放量、细胞内ATP、α-酮戊二酸(α-KG)、谷胱甘肽(GSH)以及ROS的变化。

结果显示,SSZ加入后细胞内ATP、谷胱甘肽(GSH)和谷氨酸释放量减少,细胞内α-酮戊二酸和ROS增加。1612749142364629.png

<使用产品>

· 细胞内GSH:GSSG/GSH Quantification Kit II(货号:G263)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ROS:ROS Assay Kit -Highly Sensitive DCFH-DA-(货号:R252)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ATP:ATP Assay Kit-Luminescence(货号:A550)

· 细胞内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(货号:K261)

<实验条件>

细胞:A549细胞 (1 x 106 cells)  药物处理时间:48 h

1622087224726487.png

1622087244529743.png1622087268638819.png

参考文献) Shogo Okazaki et al.,”Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”.Cancer Sci.,2019,doi:10.1111/cas.14182.

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量是多少?
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 24个样品(参照下图)

谷氨酸标准溶液和样品的96孔板排列示意图(n=3)

1609381817863934.png

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。

※Working solution配制后,避光室温条件下4 h稳定。当暴露于光线下,溶液的颜色会变成褐色。

Q3:是否可以定量D-Glutamate?
A3:该试剂盒是用于L-Glutamate定量,无法定量D-Glutamate。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酸浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解样品也可以-20°C保存1个月。 但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酸浓度可能低于检测限(5 µmol/l),谷氨酸浓度低于5 µmol/l的样品无法用该试剂盒检测。

如果待测样品被稀释,则稀释样品中含有的谷氨酸浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酸浓度调整到最低检测限以上。

Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622087017370785.png

参考文献

1)Cobler,L.et al.,”xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction”,Oncotarget,2018,9,32280-32297.

2)Tobias,M.et al.,”Role of GPX4 in ferroptosis and its pharmacological implication”,Free Radical Bioglogy and Medicine,2019,133,144-152.

 

3)K. Danchana, H. Iwasaki, K. Ochiai, H. Namba, T. Kaneta, “Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples”, Microchem. J., 2022, doi:10.1016/j.microc.2022.107513.

4)Z. Xie, T. Kawasaki, H. Zhou, D. Okuzaki, N. Okada and M. Tachbana, “Targeting GGT1 Eliminates the Tumor-Promoting Effect and Enhanced Immunosuppressive Function of Myeloid-Derived Suppressor Cells Caused by G-CSF”, Front. Pharmacol., 2022, doi:10.3389/fphar.2022.873792.