线粒体自噬—Mitophagy Detection Kit货号:MD01

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载
选择规格:
1set
现货
 
线粒体自噬检测
活动进行中
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

活动进行中

订购满5000元,200元礼品等你拿

线粒体自噬大揭秘丨从实验思路到检测指标  PDF下

 

关联指标干货参考(点击查看) 检测指标(点击查看)
线粒体自噬详述 Mitophagy Detection Kit(本产品)
多细胞器共染&线粒体动力学 MitoBright IM Red for Immunostaining
MitoBright LT Green/Red/Deep Red
线粒体功能 JC-1 、MT-1
CCK-L、ADP/ATP比率检测
Oxygen Consumption Rate(OCR)
mtSOX
ROS Assay Kit -Highly Sensitive DCFH-DA-
ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-
Ca2+从内质网到线粒体 Fura 2-AM
Fluo 4-AM
Rhod 2-AM
线粒体自噬-溶酶体功能 Lysosomal Acidic pH Detection Kit
Lysosomal Acidic pH Detection Kit-Green/Deep Red
线粒体自噬-脂质定位&定量 Lipi-Blue/Green/Red/Deep Red
Lipid Droplet Assay Kit-Blue/Deep Red
细胞死亡 Cell Counting Kit-8
Cytotoxicity LDH Assay Kit-WST
Annexin V, FITC Apoptosis Detection Kit

*点击即可跳转至详情页 

试剂盒内含

1622449707398455.png

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

1606369445891830.png

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

1606369473373528.png

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

1606285859232026.png

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

1606285997828942.png

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

1622449759948400.png

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

线粒体染色 线粒体损伤 线粒体自噬 线粒体氧化应激 线粒体呼吸

线粒体

线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。最近越老越多的研究发现线粒体在细胞中的作用远远不止”细胞能量站”。它们参与了各种细胞功能调控,与很多人类疾病存在着莫大的联系。包括细胞信号传导、代谢、自噬、衰老和肿瘤发生都与线粒体的质量和活性相关
线粒体染色
线粒体损伤
线粒体自噬
线粒体氧化应激
线粒体呼吸

品名货号用途

MitoBright IM Red for Immunostaining试剂 MT15 免疫荧光用线粒体荧光染料Red
MitoBright LT Green试剂 MT10 线粒体长效荧光染色(绿色)
MitoBright LT Red试剂 MT11 线粒体长效荧光染色(红色)
MitoBright LT Deep Red试剂 MT12 线粒体长效荧光染色(深红色)
线粒体膜电位检测试剂盒 MT13 线粒体膜电位检测
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit MT09 线粒体膜电位检测
Cellstain- MitoRed试剂 R237 线粒体ATP检测-红色
Mtphagy Dye试剂 MT02 线粒体自噬
线粒体自噬—Mitophagy Detection Kit MD01 线粒体自噬检测
mtSOX Deep Red – Mitochondrial Superoxide Detection MT14 线粒体超氧化物检测
铁离子荧光探针—Mito-FerroGreen M489 线粒体内二价铁离子检测
Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂 MT05 线粒体内单线态氧检测
MitoPeDPP试剂 M466 线粒体内脂质过氧化物检测
ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence A552 检测细胞中ADP与ATP的比率
Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒 E297 氧消耗量检测
Cell Counting Kit-Luminescence试剂盒 CK18 ATP活性检测
Glutamine Assay Kit-WST试剂盒 G268 谷氨酰胺的定量检测
Glutamate Assay Kit-WST试剂盒 G269 谷氨酸的定量检测
NAD/NADH Assay Kit-WST试剂盒 N509 NAD/NADH检测试剂盒
NADP/NADPH Assay Kit-WST试剂盒 N510 NADP/NADPH检测
α-Ketoglutarate Assay Kit-Fluorometric K261 对细胞内的α-KG进行定量检测

线粒体功能研究

▶ 线粒体呼吸指标一览表

▶ 线粒体染色选择指南

▶ 线粒体自噬检测

▶ 线粒体膜电位选择指南

▶ 代谢相关检测

▶ 癌症关联检测

▶ 脂质过氧化物积累与细胞衰老、线粒体之间的联系

 

线粒体质量控制途径

1677807353180125.png

线粒体关联产品详情,可点击页面上表产品链接

其他关联产品

 

线粒体呼吸 OCR耗氧率检测       Oxygen Consumption Rate(OCR) Plate Assay Kit
外泌体提取                                 ExoIsolator Exosome Isolation Kit
外泌体膜标记检测                       ExoSparkler Exosome Membrane Labeling Kit-Green/Red/Deep Red
溶酶体功能(pH)检测               Lysosomal Acidic pH Detection Kit

1.png

线粒体简要通路图

 

同仁化学 线粒体简要通路图.pdf

1677807121356412.png

线粒体相关检测指标

线粒体自噬检测

线粒体自噬
试剂 Mtphagy Dye Keima-Red
原理 线粒体自噬染料是一种PH敏感的荧光探针,该染料聚集在线粒体中,并由溶酶体的酸性条件而发出荧光 这是一种基于PH感应比值的荧光蛋白。该蛋白在溶酶体中具有比较高的荧光比值(如550 nm/440 nm)。
固定细胞染色
活细胞染色 Yes Yes
活细胞染色后固定
染色时间 >30 min
Ex/Em 530/700 440,550/620
产品货号 MD01 , MT02

线粒体自噬Mitophagy试剂盒【MD01】无需蛋白质表达/转染。添加试剂即可轻松检测线粒体自噬。

1.png

线粒体膜电位检测

Membrane potential

线粒体膜电位

试剂 JC-1 MT-1 TMRM,   TMRE
原理 JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色   (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。 由于膜电位,细胞渗透性荧光染料在完整的线粒体中积累。MT-1具有极强的光稳定性,比JC-1更灵敏,可以提供与TMRE相当的检测灵敏度。 该试剂是细胞渗透性荧光染料,由于膜电位在完整的线粒体中积累。探针扩散发生在膜电位降低的受损线粒体中。
固定细胞染色
活细胞染色 Yes Yes Yes
活细胞染色后固定 Yes
染色时间 10- 60 min 30 min 30- 60 min
Ex/Em Monomer:514/529

J-aggregation: 585/590

530-560 / 570-640 550/575
产品货号 MT09 MT13

JC-1、TMRE和TMRM广泛用于监测线粒体膜电位。然而,这些染料具有局限性,例如光稳定性低和醛固定后的保留性差。这些限制导致实验再现性差。

MT-1 MitoMP检测试剂盒具有高光稳定性,即使在染色后用多聚甲醛固定的细胞中。这些特征使得MT-1试剂盒能够产生高度可重复的结果。

此外,该试剂盒中包含的成像缓冲液使背景荧光最小化,并在进行测定时保持细胞活力。

1677810326571353.png

线粒体金属离子检测

Iron ion (Fe2+)

亚铁离子

Calcium ion (Ca2+)

钙离子

试剂 Mito-FerroGreen Rhod 2-AM
原理 该试剂是一种细胞通透性探针,其积累在线粒体中,并与线粒体中的亚铁离子发生特异性反应,发出绿色荧光。 该试剂是一种细胞通透性探针,该探针积聚在线粒体中,并与线粒体中的钙离子发生特异性反应,发出红色荧光。
固定细胞染色
活细胞染色 Yes Yes
活细胞染色后固定
染色时间 30 min 30-60 min
Ex/Em 505/535 553/576
产品货号 M489 R002

线粒体荧光染色

Mitochondria staining

线粒体染色

试剂 MitoBright LT series MitoBright IM Red MitoTracker series
原理 细胞渗透性荧光染料,基于线粒体膜电位而在完整的线粒体中积累。 细胞渗透性荧光染料,由于膜电位而聚集在完整的线粒体中,并与蛋白质和其他生物分子共价结合。 细胞渗透性荧光染料,基于线粒体膜电位而在完整的线粒体中积累。
固定细胞染色
活细胞染色 Yes Yes Yes
活细胞染色后固定 Yes
染色时间 >10 min 30 min 15 -45 min
Ex/Em 493/508,547/563, 643/663 548/566 490/516~644/665
产品货号 MT10MT11MT12 MT15

在HeLa细胞中4天后,MitoBright LT仍被证实保留在线粒体中。

1677814671974996.png

DAPRed – Autophagy Detection 细胞自噬检测试剂货号:D677

DAPRed – Autophagy Detection 细胞自噬检测试剂货号:D677
细胞自噬检测试剂盒
DAPRed – Autophagy Detection
商品信息
储存条件:
0-5度保存,避光
运输条件:
室温
特点:

● 操作流程简便

● 与LC3结果高度一致

● 可以动态观察细胞自噬

下载说明书
产品文献
SDS下载

选择规格:
5nmol

现货

操作简便
活细胞检测
自噬小体检测
线粒体自噬检测(点击查看)

活动进行中产品概述原理试剂概要操作简便实验例DAPRed荧光光谱常见问题Q&A参考文献
活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1. DALGreen – Autophagy Detection 细胞自噬检测

NO.2. Cell Counting Kit-8 细胞增殖毒性检测

NO.3. Caspase-3 Assay Kit-Colorimetric- 细胞凋亡检测

NO.4. Liperfluo 细胞脂质过氧化物检测

NO.5. Mitophagy Detection Kit 线粒体自噬检测

产品概述

细胞自噬是细胞内损坏的蛋白质或细胞器降解和循环利用的过程。
DAPRed是一种小分子荧光染料,可以用来检测自噬体及自噬溶酶体。由于其特殊的结构,在自噬体形成双层膜结构时染料可以进入其中,并在疏水环境中产生荧光。
DAPRed可以进入自噬体膜而发出荧光;而DALGreen可以在自噬溶酶体产生阶段发出荧光。因此DAPRed,DALGreen可以检测从自噬体的形成到自噬溶酶体的融合以及内容物分解的整个过程。

原理

1622787436478709.png

当形成自噬体膜时,DAPRed可以掺入其中,并在脂溶性环境中产生荧光。

DAPRed的检测结果与细胞自噬标志物LC3的结果有很高的相关性。

1622787557957820.png

试剂概要

使用前,请确认所用仪器可以检测到的荧光特性。

1622787655866132.png

操作简便

操作流程只有一步-加入试剂
无需基因转染。只需向准备好的细胞加入DAPRed染料,即可方便快捷的进行荧光检测。

1612415620431352.jpg

实验例

DAPRed和DAL Green的共染
用自噬体荧光试剂DAPRed和自噬溶酶体荧光试剂DALGreen对HeLa细胞进行共染后,通过饥饿培养诱导自噬。

1622788180693956.png

·结果

在不含氨基酸的培养基中培养的HeLa细胞,DAPRed和DALGreen荧光增强。

·检测条件
DAPRed:EX. 561 nm / Em. 600-700 nm
DALGreen:EX. 488 nm / Em. 500-563 nm
比例尺 :20 μm

·自噬诱导条件
用DAPRed和DALGreen染色后的HeLa细胞分别在增殖型培养基和不含氨基酸的培养基中培养5 h后,用共聚焦显微镜观察。

DAPRed荧光光谱

1607288752418470.png

常见问题Q&A

Q1: DAPRed Working Solution的稳定性如何?

A1: 无法长期保存,需要现配现用
Q2: DAPRed DMSO Stocking Solution的稳定性如何?

A2: 配制后请于-20℃保存,一个月内可保持稳定。另外建议根据用量分装保存。
Q3: 推荐使用的滤光片?

A3: 推荐的滤光片如下:
激发波长:500-560 nm

发射波长:690-750 nm

Q4: 如何确定细胞自噬探针DAPRed的最佳浓度?

A4:由于本试剂的特性,如果试剂的浓度太高或太低都会导致诱导自噬的样品组与未诱导自噬的对照组之间的差别不明显。建议参考以下信息摸索试剂的最佳浓度:

探针的最佳浓度根据细胞的种类而不尽相同。以DAPRed为例可以考虑从最低浓度(可以以0.05μmol/l作为参考)开始分别多个梯度至摸索至最高浓度(可以以0.4 μmol/l作为参考)的步骤进行摸索。

1622108968137374.png

参考例

我们公司对HeLa, HepG2, CHO细胞的最佳浓度进行了摸索。DAPRed以下列浓度进行染色,并在无氨基酸的培养基中培养以诱导自噬。下表中红色字体的浓度可明显观察到实验组与空白组的差异。

[HeLa细胞]

1612416674568578.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:561 nm;发射波长:Em:600-700 nm

[HepG2细胞]

1612416807368714.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:561 nm;发射波长:Em:600-700 nm

[CHO细胞]

1612416864229024.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:561 nm;发射波长:Em:600-700 nm

Q5: 自噬有哪些途径?DAPRed可以检测到哪些状态?

A5: 众所周知,自噬根据其分子机制可以分为两种:一种是依赖于ATG5的传统自噬(LC3发生变化),另一种则是非依赖于ATG的选择性自噬(LC3形式的转化并未发生)。
当形成自噬体膜时,DAPRed可以掺入其中,并在脂溶性环境中产生荧光。因此DAPRed可以检测自噬体的状态。

*参考资料:发现新的自噬机制Shigeomi Shimizu

https://www.dojindo.co.jp/letterj/160/review/01.html

文献链接:http://dx.doi.org/10.14348/molcells.2018.2215

▶对于首次检测的细胞类型和实验条件,请参考FAQ[如何确定细胞自噬探针DAPRed的最佳浓度]。

参考文献

No.

检测样品

检测仪器

引用(含链接)

1)

细胞
(HUVEC)

荧光显微镜

X. Chen, X. Yan, J. Liu and L. Zhang, ” Chaiqi decoction ameliorates vascular endothelial injury in metabolic syndrome by upregulating autophagy.”, Am. J. Transl. Res., 2020,12(9), 4902.

2)

细胞
(HeLa)

荧光显微镜

H. Fang , S. Geng, M. Hao, Q. Chen, M. Liu, C. Liu, Z. Tian, C. Wang, T. Takebe, J-L Guan, Y. Chen, Z. Guo, W. He and J. Diao, “Simultaneous Zn2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells “, Nat Commun, 2021, 12(1), 109. 10.1016/j.envpol.2019.07.105.

3)

细胞
(HCT116; HCT8)

荧光显微镜

H. Sun, R. Wang, Y. Liu, H. Mei and X. Liu , “USP11 induce resistance to 5-Fluorouracil in Colorectal Cancer through activating autophagy by stabilizing VCP”, J Cancer , 2021, 12(8), 2317.

4)

细胞
(MEF)

荧光显微镜

M. Yagi, T. Toshima, R. Amamoto, Y. Do, H. Hirai, D. Setoyama, D. Kang and T. Uchiumi, “Mitochondrial translation deficiency impairs NAD+-mediated lysosomal acidification”, EMBO J, 2021, doi:10.15252/embj.2020105268.

关联产品

线粒体自噬—Mitophagy Detection Kit
线粒体自噬检测试剂盒

DALGreen – Autophagy Detection 细胞自噬检测试剂
DALGreen – 细胞自噬荧光探针

DAPGreen – Autophagy Detection 细胞自噬检测试剂
DAPGreen – 细胞自噬荧光探针

Mtphagy Dye试剂
Mtphagy Dye

LysoPrime Green – High Specificity and pH Resistance
溶酶体染色试剂Green
在线小工具
实验工具|稀释计算器|摩尔浓度计算器

DAPGreen – Autophagy Detection 细胞自噬检测试剂货号:D676

DAPGreen – Autophagy Detection 细胞自噬检测试剂货号:D676
DAPGreen – 细胞自噬荧光探针
DAPGreen – Autophagy Detection
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

● 操作流程简便

● 与LC3结果高度一致

● 可以动态观察细胞自噬

下载说明书
产品文献
SDS下载
选择规格:
5nmol
现货
操作简便
荧光/流式/荧光酶标仪可测
自噬小体检测
线粒体自噬检测(点击查看)
活动进行中
产品概述
原理
试剂概要
操作简便
实验例
DAPGreen荧光光谱
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Mitophagy Detection Kit    线粒体自噬检测

NO.3.    Calcein-AM/PI Double Staining Kit    活死细胞双染

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

产品概述

DAPGreen是一种小分子荧光染料,可以用来检测自噬体及自噬溶酶体。由于其特殊的结构,在自噬体形成双
层膜结构时染料可以进入其中,并在疏水环境中产生荧光。DAPGreen具有很好的细胞透膜性,通过荧光显微
镜可进行活细胞荧光成像,也可使用流式细胞仪进行定量检测。

原理

1608884957236468.png

当形成自噬体膜时,DAPGreen可以掺入其中,并在脂溶性环境中产生荧光。

DAPGreen的检测结果与细胞自噬标志物LC3的结果有很高的相关性。

1611282483858004.png

试剂概要

DAPGreen不仅可以用荧光显微镜检测,还可以使用流式细胞仪进行检测。

同时也实现了用荧光酶标仪进行检测,您可以根据自己的实验条件,使用不同的仪器进行检测。

1622783386690067.jpg                                                                                                                                                                                                        *DAPGreen和DALGreen不能共染

操作简便

操作流程只有一步-加入试剂

只需向准备好的细胞加入DAPGreen染料,即可方便快捷的进行荧光检测。

1622788081354059.png

实验例

与LC3高度相关           
与自噬标准物LC3的细胞共染实验结果的比较。
1607285574690268.png

检测条件:DAPGreen:Ex. 488 nm / Em. 500-563 nm

比例尺:10 μm
将DAPGreen加入已表达tagRFP-LC3的Hela细胞中,用雷帕霉素(Rapamycin)诱导自噬4 h后,用共聚焦显微镜观察DAPGreen和RFP的荧光成像。结果DAPGreen与tagRFP-LC3的染色部位高度一致。

与Lamp-1共染                                                               1607285667942217.png

对已经表达Lamp1-tagRFP的MEF细胞进行DAPGreen共染实验。结果显示,DAPGreen的染色部位与溶酶体膜蛋白标记物Lamp 1的位置高度一致。(比例尺:10 μm)

实验的详细情况请参考如下论文:
“Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

流式细胞仪的定量分析

自噬诱导后,通过流式细胞仪检测DAPGreen的荧光。

流式细胞图.jpg

检测条件:
检测波长:Ex. 488 nm / Em. 500-560 nm

DAPGreen染色HeLa细胞后,在不含氨基酸的培养基中培养0、3和6 h,用流式细胞仪检测。结果,在饥饿诱导3 h后可以检测到更强的荧光信号。

荧光酶标仪的定量检测
用荧光酶标仪检测自噬诱导后DAPGreen的荧光。
定量检测.jpg

检测条件

检测波长:Ex. 450 nm / Em. 535 nm

DAPGreen染色HeLa细胞后,在不含氨基酸的培养基中分别培养0、2、4、6 h,用荧光酶标仪检测。结果饥饿诱导2 h检测荧光,饥饿诱导组的荧光强度大约是对照组的3.5倍。

有关检测操作的详细信息,请参考FAQ“使用荧光酶标仪进行定量分析的检测条件是什么?”。

应用例:荧光显微镜的数值化

96孔板中接种HeLa细胞,并用DAPGreen染色后,分别更换含有血清和不含血清的培养基后继续培养。培养后分别通过视野内的平均荧光强度进行计算。结果发现,不含血清的培养基培养的细胞中DAPGreen的荧光强度更高。

荧光强度的数值化.jpg

<检测条件>

Ex:488 nm, Em: 500-550 nm

物镜: CFI Plan Apochromat VC 20x

拍摄模式: Resonant Scanner

XY分辨率:512×512

<使用装置>

荧光显微镜:Nikon 激光共聚焦显微镜A1R

分析软件:NIS-Elements

<实验步骤>

1. 将HeLa细胞播种于96孔板中并培养。

2. 去除培养基,用无血清培养基清洗1次。

3. 添加配置好的DAPGreen working solution ,37℃ 培养30 min。

4. 去除培养基,用无血清培养基清洗2次。

5. 诱导自噬的孔中加入无血清培养基,正常孔中加入正常培养基。37℃培养6小时(之后用4%PFA固定)。

6. 荧光显微镜观察。

按上述条件拍摄后,再用100倍物镜放大后拍摄,对细胞内的DAPGreen的荧光信号进行统计。结果显示,含有血清的培养基培养的细胞中平均每个细胞有1.5个信号,而不含血清的培养基培养的细胞中平均每个细胞有27个信号。

荧光亮点.jpg

<检测条件>

Ex : 488 nm, Em : 500-550 nm

物镜: CFI Plan Apochromat TIRF 100xC Oil

拍摄模式: Galvano Scanner

XY分辨率:512×512

<使用装置>

荧光显微镜:Nikon 激光共聚焦显微镜A1R

分析软件:NIS-Elements

*本数据由DAPGreen的使用客户友情提供。

DAPGreen荧光光谱

荧光光谱图.jpg

激发滤光片:425-475 nm
荧光滤光片:500-560 nm

常见问题Q&A

Q1: DAP Green working solution的稳定性如何?
A1:无法长期保存,需要现配现用
Q2: DMSO stocking solution 的稳定性如何?
A2:配制后请于-20℃保存,一个月内可保持稳定。另外建议根据用量分装保存。
Q3: 推荐使用的滤光片?
A3:激发波长:425-475 nm

发射波长:500-560 nm

利用激光共聚焦显微镜的488 nm激发波长也可以检测,请参考我们公司网站产品页面的实验例。

Q4: 在进行延时成像时有什么要注意的地方吗?
4:为了确定最佳实验条件,请先进行预实验。

由于试剂的特性,刚刚染色后有荧光值升高的趋势,因此请参照以下步骤进行预实验和延时成像。

1622788542333068.jpg

1. 预实验

使用对照细胞(不诱导自噬的细胞)。

根据说明书的步骤用 Working Soluiton染色后,用培养基洗涤2次。

加入正常培养基后,观察荧光随时间的变化。

如下图所示,染色后的细胞在荧光强度阶段性降低之后,确认荧光强度变化趋于稳定的时间段(图中的T)。

※条件可能因细胞种类而异。

(参考)

HeLa细胞染色约60分钟后,荧光会趋于稳定(DAPGreen)。

1622788575872392.jpg

2. 延时染色成像

– 细胞用Working Solution染色后,在培养基中37℃培养。

※培养时间为预实验中摸索出的染色时间。验中摸索出的染色时间。

※染色后不要立刻进行自噬诱导。

-培养后进行自噬诱导并开始延时染色成像。

(参考)

用DAPGreen对HeLa细胞进行染色,在正常的培养基中培养60分钟(预实验中摸索的时间)后,进行自噬诱导。

Q5: 如何确定细胞自噬探针DAPGreen的最佳浓度?
A5: 由于本试剂的特性,如果试剂的浓度太高或太低都会导致诱导自噬的样品组与未诱导自噬的对照组之间的差别不明显。建议参考以下信息摸索试剂的最佳浓度:

探针的最佳浓度根据细胞的种类而不尽相同。以DAPGreen为例可以考虑从最低浓度(可以以0.05 μmol/l作为参考)开始分别多个梯度至摸索至最高浓度(可以以0.4 μmol/l作为参考)的步骤进行摸索。

参考例:

我们公司对HeLa, HepG2, CHO细胞的最佳浓度进行了摸索。DAPGreen以下列浓度进行染色,并在无氨基酸的培养基中培养以诱导自噬。下表中红色字体的浓度可明显观察到实验组与空白组的差异。

[HeLa细胞]

1612412064421234.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:488 nm;发射波长:Em:500-563 nm

[HepG2细胞]

1612412185102126.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:488 nm;发射波长:Em:500-563 nm

[CHO细胞]

1612412266231182.jpg

<检测条件>放大倍率:20倍; 激发波长:Ex:488 nm;发射波长:Em:500-563 nm

细胞种类 DAPGreen浓度
Hela 0.4 μmol/l 0.2 μmol/l 0.1 μmol/l 0.05 μmol/l
HepG2 0.4 μmol/l 0.2 μmol/l 0.1 μmol/l 0.05 μmol/l
CHO 0.4 μmol/l 0.2 μmol/l 0.1 μmol/l 0.05 μmol/l
Q6: 使用荧光酶标仪进行定量分析的检测条件是什么?
A6:以下是使用HeLa细胞进行检测的实验例。

将DAPGreen染色的HeLa细胞在不含氨基酸的培养基中分别培养0、2、4、6 h,用荧光酶标仪检测。

<操作>

1)将细胞接种在透明底的黑板上(HeLa细胞,1.6×104 cells/孔,100 µl/孔)

2)在37°C,5% CO2培养箱过夜培养

3)去除上清液后,在培养基中加入100 µl配制好的Working Solution(DAPGreen:0.1 µmo/l)。

4)在37°C,5% CO2培养箱培养30 min

5)用100 µl培养基清洗细胞2次

6)加入100 µl饥饿培养基(Waco,Code:048-33575)

7)在37°C下培养各时间点

8)用荧光酶标仪(TECAN,Infinite Pro M200)检测(Ex/Em = 450 nm/530 nm)

(0 h对照组用HBSS代替检测)

<检测条件>波长:Ex. 450 nm/Em. 535 nm

饥饿诱导2 h检测荧光,确认到饥饿诱导组的荧光强度大约是对照组的2.5倍。1611282027303404.png

Q7: 自噬有哪些途径?DAPGreen可以检测到哪些状态?
A7:众所周知,自噬根据其分子机制可以分为两种:一种是依赖于ATG5的传统自噬(LC3发生变化),另一种则是非依赖于ATG的选择性自噬(LC3形式的转化并未发生)。

当形成自噬体膜时,DAPGreen可以掺入其中,并在脂溶性环境中产生荧光。因此DAPGreen可以检测自噬体的状态。

*参考资料:发现新的自噬机制Shigeomi Shimizu

https://www.dojindo.co.jp/letterj/160/review/01.html

文献链接:http://dx.doi.org/10.14348/molcells.2018.2215

▶对于首次检测的细胞类型和实验条件,请参考FAQ[如何确定细胞自噬探针DAPGreen的最佳浓度]。

参考文献

No. 检测样品 检测仪器 引用(含链接)
1) 细胞
(HeLa, MEF)
荧光显微镜 H. Iwashita, H. T. Sakurai, N. Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, K. Okuma, S. Shimizu, and Y. Ueno, “Small fluorescent molecules for monitoring autophagic flux.”, FEBS Letters., 2018, 592, (4), 559–567.
2) 细胞
(HepG2; Huh-7)
荧光显微镜;流式细胞仪  L. Hu, T. Zhang, D. Liu, G. Guan, J. Huang, P. Proksch, X. Chen and W. Lin, “Notoamide-type alkaloid induced apoptosis and autophagy via a P38/JNK signaling pathway in hepatocellular carcinoma cells”, RSC Adv., 2019, 9, 19855.
3) 细胞
(HepG2)
荧光显微镜 Q. Chu, S. Zhang, M. Chen, W. Han, R. Jia, W. Chen and X. Zheng, “Cherry Anthocyanins Regulate NAFLD by Promoting Autophagy Pathway”, Oxid Med Cell Longev., 2019,DOI:10.1155/2019/4825949.
4) 细胞
(HLMVEC)
荧光显微镜 Q. Chu, S. Zhang, M. Chen, W. Han, R. Jia, W. Chen and X. Zheng, “Cherry Anthocyanins Regulate NAFLD by Promoting Autophagy Pathway”, Oxid Med Cell Longev., 2019,DOI:10.1155/2019/4825949.
5) 细胞
(HeLa)
荧光显微镜 F. Hongbao,Y. Shankun, C. Qixin, L. Chunyan, C. Yuqi, G. Shanshan, B. Yang, T. Zhiqi, L. Z. Amanda, T. Takanori, C.Yuncong, G. Zijian, H. Weijiang and D. Jiajie , “De Novo-Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and in Vivo.”, ACS Nano, 2019, 13, (12), 1446.
6) 细胞
(HeLa; A375)
流式细胞仪 B. Yang, L. Ding, Y. Chen and J. Shi, “Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition”, Adv. Sci., 2020,DOI:10.1002/advs.201902847.
7) 细胞
(PC12)
荧光显微镜(超分辨率) Y. Tan, L. Yin, Z. Sun, S. Shao, W. Chen, X. Man,Y. Du and Y. Chen, “Astragalus polysaccharide exerts anti-Parkinson via activating the PI3K/AKT/mTOR pathway to increase cellular autophagy level in vitro.”, Int. J. Biol. Macromol., 2020, DOI:10.1016/j.ijbiomac.2020.02.282.
8) 细胞
(Wild type Hepa 1-6)
荧光显微镜

(用ImageJ软件数值化)

J. Kim, W.Y.Chee, N. Yabuta, K. Kajiwara, S. Nada and M. Okada, “Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts”, Biochem. Biophys. Res. Commun., 2020, 22, DOI:10.1016/j.bbrc.2020.05.083.
9) 细胞
(小鼠皮肤成纤维细胞)
流式细胞仪 J. Kim, W.Y.Chee, N. Yabuta, K. Kajiwara, S. Nada and M. Okada, “Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts”, Biochem. Biophys. Res. Commun., 2020, 22, DOI:10.1016/j.bbrc.2020.05.083.
10) 细胞
(HeLa)
荧光显微镜(超分辨率) Q. Chen, M. Hao, L. Wang, L. Li, Y. Chen, X. Shao, Z. Tian, R. A. Pfuetzner, Q. Zhong, A. T. Brunger, J. Guan and J. Diao, “Prefused lysosomes cluster on autophagosomes regulated by VAMP8”,2021, doi:10.1038/s41419-021-04243-0.

关联产品

线粒体自噬—Mitophagy Detection Kit
线粒体自噬检测试剂盒
DALGreen – Autophagy Detection 细胞自噬检测试剂
DALGreen – 细胞自噬荧光探针
DAPRed – Autophagy Detection 细胞自噬检测试剂
细胞自噬检测试剂盒
Mtphagy Dye试剂
Mtphagy Dye
LysoPrime Green – High Specificity and pH Resistance
溶酶体染色试剂Green
在线小工具

实验工具|稀释计算器|摩尔浓度计算器

DALGreen – Autophagy Detection 细胞自噬检测试剂货号:D675

DALGreen – Autophagy Detection 细胞自噬检测试剂货号:D675
DALGreen – 细胞自噬荧光探针
DALGreen – Autophagy Detection
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

● 操作流程简便

● 与LC3结果一致性高

● 可以动态观察细胞自噬

下载说明书
产品文献
SDS下载
选择规格:
20 nmol
操作简便
荧光/流式均可检测
自噬溶酶体检测
线粒体自噬检测(点击查看)
活动进行中
产品概述
原理
试剂概要
操作特点
实验例
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    DAPRed – Autophagy Detection    细胞自噬检测

NO.2.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.3.    Mitophagy Detection Kit    线粒体自噬检测

NO.4.    ROS Assay Kit    活性氧检测

NO.5.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

产品概述

细胞自噬是细胞内损坏的蛋白质或细胞器降解和循环利用的过程。

DALGreen是一种可以进入细胞膜检测细胞自噬的小分子脂溶性荧光染料,具有在酸性环境中产生荧光的特性,可以检测到自噬体与溶酶体融合形成的自噬溶酶体。

原理

1622714796362045.png

1622714813300620.png

与DAPGreen和DAPRed一样,在自噬体形成的时候染料掺入细胞膜。然后当自噬体与溶酶体融合产生酸性环境时,DALGreen的荧光增强。

试剂概要

DALGreen不仅可以用荧光显微镜检测,还可以使用流式细胞仪进行检测。DAPGreen可以用荧光酶标仪进行检测,

您可以根据自己的实验条件,使用不同的仪器进行检测。

1622763386194990.jpg

操作特点

操作流程只有一步-加入试剂

无需基因转染。只需向准备好的细胞加入DALGreen染料,即可方便快捷的进行荧光检测。1622715097430648.png

实验例

与LC3共染

对已经表达tagRFP-LC3的MEF细胞进行DALGreen共染实验。结果显示,DALGreen的染色部位与自噬体和自噬溶酶体的标记物LC3的位置高度一致。(比例尺:10 μm)

实验的详细情况请参考如下论文:
H. Iwashita,”Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

1607062553425242.png

与Lamp-1共染

对已经表达Lamp1-tagRFP的MEF细胞进行DALGreen共染实验。结果显示,DALGreen的染色部位与溶酶体膜蛋白标记物Lamp 1的位置高度一致。(比例尺:10 μm)

实验的详细情况请参考如下论文:
H. Iwashita,”Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

1607062597946867.png

ULK1/2敲除细胞的评价

 

将野生型MEF细胞与已经敲除自噬体膜形成有关的ULK1/2的细胞株一起用雷帕霉素(Rapamycin)和氯喹(Chloroquine)刺激后进行对比实验。结果显示,在野生型细胞中明显观察到荧光增强,而敲除了ULK1/2的细胞中基本观察不到荧光的增强。

实验的详细情况请参考如下论文:
H. Iwashita,”Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

1612775385707553.png

细胞延时成像

用DALGreen染色HeLa细胞后,按照下列条件从培养30分钟开始直至培养6小时一直对细胞染色状态进行观察。

・Nutrient Condition: 增殖型培养基
・Autophagic Condition: 不含氨基酸的培养基

<检测条件>
仪器:激光共聚焦高内涵细胞分筛系统(恒河电机株式会社: CQ1)
荧光滤光片:Ex.405 nm / Em.525/50 nm,倍率:20X

1622715147507527.jpg

DALGreen与其它试剂的长时间染色实验的比较,可进行单一样品随时间变化的长期观察实验。
・由于DALGreen在自噬诱导/抑制剂之前加,所以可以实时观察自噬的进程。另外在不知道自噬诱导/抑制剂的作用时间情况下,与其它试剂相比,用DALGreen更加方便快捷。
每个时间组均需要单独制备样品

1622715171845695.jpg

・MDC(Monodansylcadaverine)等其它试剂必须要在诱导后加,
需要摸索诱导/抑制剂的作用时间,因此需要准备多组实验,操作复杂,耗费更多的时间和实验材料。

与LC3的对比

1622715193815492.jpg

HeLa细胞:①对照组,②饥饿诱导(诱导细胞自噬)组

DALGreen的荧光成像图和细胞自噬因子LC3-Ⅱ表达量结果的对比

结果
DALGreen:饥饿诱导组比Control组荧光增强;LC3-Ⅱ:饥饿诱导组比Control组LC3-Ⅱ表达量增加;
结果表明两者有良好的相关性。

自噬诱导条件
① Control:用培养基培养6小时
② 饥饿诱导:用不含氨基酸培养基培养6小时

DALGreen的显色条件
细胞:HeLa细胞
检测波长:Ex. 488 nm/Em. 500-563 nm
比例尺:20 μm

与MDC的对比

1622715254506328.jpg

结果

DALGreen和MDC结果:饥饿诱导组均比Control组荧光增强;结果表明两者有良好的相关性。

波长

因为MDC的最大激发波长在紫外区,所以不能用488 nm激发。DALGreen可以采用488 nm激发。

操作

DALGreen:加染料⇒饥饿诱导

MDC :饥饿诱导⇒加染料

由于DALGreen是在饥饿诱导前加入,因此可以动态观察到细胞自噬的过程。

常见问题Q&A

Q1: DALGreen Working Solution的稳定性如何?
A1: 无法长期保存,需要现配现用
Q2: DMSO Stocking Solution 的稳定性如何?
A2:配制后请于-20℃保存,一个月内可保持稳定。另外建议根据用量分装保存。
Q3:如何摸索DALGreen的最佳浓度?
A3 :由于本试剂的特性,如果试剂的浓度太高或太低都会导致诱导自噬的样品组与未诱导自噬的对照组之间的差别不明显。建议参考以下信息摸索试剂的最佳浓度:

DALGreen的最佳浓度根据细胞的种类而不尽相同。

可以考虑从最低浓度(可以0.1 μmol/l作为参考)开始分别多个梯度至最高浓度(可以4 μmol/l作为参考)的步骤进行摸索。

参考例

我们公司对HeLa, HepG2, CHO细胞的最佳浓度进行了摸索。DALGreen以下列浓度进行染色,并在无氨基酸的培养基中培养以诱导自噬。下表中红色字体的浓度可明显观察到实验组与空白组的差异。

细胞种类 DALGreen浓度
HeLa 4  μmol/l 2  μmol/l 1  μmol/l 0.5  μmol/l
HepG2 4  μmol/l 2  μmol/l 1  μmol/l 0.5  μmol/l
CHO 4  μmol/l 2  μmol/l 1  μmol/l 0.5  μmol/l
Q4: 这个产品和溶酶体染色试剂有什么区别吗?
A4:溶酶体染色试剂会定位于细胞内的溶酶体里。而DALGreen是在进入自噬小体后,当自噬小体与溶酶体结合后,荧光变强。

因此当溶酶体染色试剂和DALGreen共染时,溶酶体染色试剂发出的荧光与自噬小体的部分DALGreen的荧光发生重叠。

本实验的数据,请参考下面论文的Supporting Information (Fig.S5)。

H. Iwashita, “Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

论文的原文链接在本产品的网站页面上。

网站链接(日语):

http://dominoweb.dojindo.co.jp/goodsr7.nsf/View_Display/D675?OpenDocument

Q5:推荐使用的滤光片?
A5:激发波长:350~450 nm;
发射波长:500~560 nm;
另外利用激光共聚焦显微镜的488 nm激发波长也可以检测,
请参考我们公司网站产品页面的实验例。
Q6:是否有与自噬相关的蛋白质敲除和评估的实例?
A6:与自噬小体成膜有关的ULK1和ULK2敲除的细胞与野生型细胞饥饿诱导,用DALGreen染色后评价的实例是有的。

实验结果显示,与ULK1/ULK2敲除的细胞相比,野生型细胞中的DALGreen荧光信号增大。这次实验的具体数据请参照下面这篇论文的Supporting Information (Fig. S5)

另外,自噬的标记物LC3-RFP与DALGreen的共染色结果显示,大多数的染色Puncta(斑点,位点)都高度一致。本实验的数据,请参考下面论文的Fig.1。

H. Iwashita, “Small fluorescent molecules for monitoring autophagic flux”, FEBS Letters., 2018, 592, (4), 559–567.

论文的原文链接在本产品的网站页面上。

网站链接(日语):

http://dominoweb.dojindo.co.jp/goodsr7.nsf/View_Display/D675?OpenDocument

Q7:自噬有哪些途径?DALGreen可以检测到哪些状态?
A7:众所周知,自噬根据其分子机制可以分为两种:一种是依赖于ATG5的传统自噬(LC3发生变化),另一种则是非依赖于ATG的选择性自噬(LC3形式的转化并未发生)。

DALGreen在形成自噬体膜时掺入其中,当形成自噬溶酶体时,环境变成酸性,DALGreen荧光增强。因此,DALGreen可以检测自噬溶酶体的状态。

*参考资料:发现新的自噬机制Shigeomi Shimizu

https://www.dojindo.co.jp/letterj/160/review/01.html

文献链接:http://dx.doi.org/10.14348/molcells.2018.2215

▶对于首次检测的细胞类型和实验条件,请参考FAQ[如何确定细胞自噬探针DALGreen的最佳浓度]。

Q8:在进行延时成像时有什么要注意的地方吗?
A8:为了确定最佳实验条件,请先进行预实验。

由于试剂的特性,刚刚染色后有荧光值升高的趋势,因此请参照以下步骤进行预实验和延时成像。

1612407927635598.jpg

※条件可能因细胞种类而异

1. 预实验

– 使用对照细胞(不诱导自噬的细胞)。

– 根据说明书的步骤用Working Soluiton染色后,用培养基洗涤2次。

– 加入正常培养基后,观察荧光随时间的变化。

– 如下图所示,染色后的细胞在荧光强度阶段性降低之后,确认荧光强度变化趋于稳定的时间段(图中的T)。

※条件可能因细胞种类而异。

(参考)

HeLa细胞的话,染色后约60分钟后,荧光确定会趋于稳定(DALGreen)。

1612408075392155.jpg

2. 延时染色成像

– 细胞用Working Solution染色后,在培养基中37℃培养。

※培养时间为预实验中摸索出的染色时间。

※染色后不要立刻进行自噬诱导。

-培养后进行自噬诱导并开始延时染色成像。

(参考)

用DALGreen对HeLa细胞进行染色,在正常的培养基中培养60分钟(预实验中摸索的时间)后,进行自噬诱导。

参考文献

No. 检测样品 检测仪器 引用(含链接)
1) 细胞
(HeLa, MEF)
荧光显微镜 H. Iwashita, H. T. Sakurai, N. Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, K. Okuma, S. Shimizu, and Y. Ueno, “Small fluorescent molecules for monitoring autophagic flux.”, FEBS Letters., 2018, 592, (4), 559–567.
2) 细胞
(HeLa)
荧光显微镜 T. Sakata, A. Saito and H. Sugimoto, “In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing.”, Scientific Reports., 2018, 8, 8282.
3) 细胞
(HS-MM)
荧光显微镜 Y. Egawa, C. Saigo, Y. Kito, T. Moriki and T. Takeuchi , “Therapeutic potential of CPI-613 for targeting tumorous mitochondrial energy metabolism and inhibiting autophagy in clear cell sarcoma.”, PLoS One., 2018, 13, (6), e0198940.
4) 细胞
(HaCaT)
荧光显微镜 S. Abe, S. Hirose, M. Nishitani, I. Yoshida, M. Tsukayama, A. Tsuji and K. Yuasa , “Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells.”, Biosci. Biotechnol. Biochem. ., 2018, 82, (12), 1347.
5) 细胞
(KGN)
荧光显微镜 W. Yuping, M. Congshun, Z. Huihui, Z. Yuxia, C. Zhenguo and W. Liping, “Alleviation of endoplasmic reticulum stress protects against cisplatin-induced ovarian damage.”, Reprod. Biol. Endocrinol., 2018,doi: 10.1186/s12958-018-0404-4.
6) 细胞
(BmN)
荧光显微镜 S. Xue, F. Mao, D. Hu, H. Yan, J. Lei, E. Obeng, Y. Zhou, Y. Quan, and W. Yu, “Acetylation of BmAtg8 inhibits starvation-induced autophagy initiation.”, Mol. Cell Biochem., 2019,doi: 10.1007/s11010-019-03513-y.
7) 细胞
(HeLa)
荧光显微镜 F. Hongbao,Y. Shankun, C. Qixin, L. Chunyan, C. Yuqi, G. Shanshan, B. Yang, T. Zhiqi, L. Z. Amanda, T. Takanori, C.Yuncong, G. Zijian, H. Weijiang and D. Jiajie , “De Novo-Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and in Vivo.”, ACS Nano, 2019, 13, (12), 1446.
8) 细胞
(RT-7)
流式细胞仪 E. Sasabe, A. Tomomura, N. Kitamura and T. Yamamoto, “Metal nanoparticles-induced activation of NLRP3 inflammasome in human oral keratinocytes is a possible mechanism of oral lichenoid lesions.”, Toxicol In Vitro., 2020, 62, 104663.
9) 细胞
(骨髓细胞)
荧光显微镜 J. Xia, Y. He, B. Meng, S. Chen, J. Zhang, X. Wu, Y. Zhu, Y. Shen, X. Feng, Y. Guan, C. Kuang, J. Guo, Q. Lei, Y. Wu, G. An, G. Li, L. Qiu, F. Zhan and W. Zhou, “NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma.”, Mol Oncol, 2020, DOI: 10.1002/1878-0261.12641.
10) 细胞
(Human L2)
荧光显微镜 Q. Xu, W. Shi, P. Lv, W. Meng, G. Mao, C. Gong, Y. Chen, Y. Wei, X. He, J. Zhao, H. Han, M. Sun and K. Xiao, “Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy.”, Cell Death Dis., 2020, 11(1), 6.
11) 细胞
(心肌细胞)
荧光显微镜 L Cui, LP Zhao, JY Ye, L Yang, Y Huang, X.P. Jiang, Q. Zhang, JZ. Jia, DX. Zhang and Y. Huang, “The Lysosomal Membrane Protein Lamp2 Alleviates Lysosomal Cell Death by Promoting Autophagic Flux in Ischemic Cardiomyocytes.”, Front Cell Dev Biol, 2020,DOI:10.3389/fcell.2020.00031.
12) 细胞
(IPEC-J2)
荧光显微镜 Y Yang, J Huang, J Li, H Yang and Y. Yin, “The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells..”, Curr. Mol. Med., 2020, 20(4), 307.
13) 细胞 (成纤维细胞、肾脏上皮细胞) 荧光显微镜 M. M. Ivanova, J. Dao, N. Kasaci, B. Adewale, J. Fikry and O. G. Alpan  , “Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy”, Biomolecules , 2020,  10(6), 837.
14) 细胞 (NHEKs) 荧光显微镜 S. Ikeoka and A. Kiso  , “The Involvement of Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal Keratinocytes “, J. Soc. Cosmet. Chem. Jpn., 2020,  54(3), 252.
15) 细胞
(HeLa)
荧光显微镜(超分辨率) Q. Chen, M. Hao, L. Wang, L. Li, Y. Chen, X. Shao, Z. Tian, R. A. Pfuetzner, Q. Zhong, A. T. Brunger, J. Guan and J. Diao,”Prefused lysosomes cluster on autophagosomes regulated by VAMP8″, 2021, doi:10.1038/s41419-021-04243-0.

关联产品

线粒体自噬—Mitophagy Detection Kit
线粒体自噬检测试剂盒
DAPGreen – Autophagy Detection 细胞自噬检测试剂
DAPGreen – 细胞自噬荧光探针
DAPRed – Autophagy Detection 细胞自噬检测试剂
细胞自噬检测试剂盒
Mtphagy Dye试剂
Mtphagy Dye
LysoPrime Green – High Specificity and pH Resistance
溶酶体染色试剂Green
在线小工具

实验工具|稀释计算器|摩尔浓度计算器

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载
选择规格:
1set
现货 
 
线粒体自噬检测
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

试剂盒内含

1622449707398455.png

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

1606369445891830.png

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

1606369473373528.png

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

1606285859232026.png

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

1606285997828942.png

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

1622449759948400.png

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

线粒体自噬—Mitophagy Detection Kit货号:MD01 线粒体自噬检测试剂盒

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载
选择规格:
1set
现货 
 
线粒体自噬检测
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

试剂盒内含

1622449707398455.png

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

1606369445891830.png

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

1606369473373528.png

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

1606285859232026.png

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

1606285997828942.png

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

1622449759948400.png

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色