Glutamate Assay Kit-WST试剂盒货号:G269

Glutamate Assay Kit-WST试剂盒货号:G269
谷氨酸的定量检测试剂盒
Glutamate Assay Kit-WST
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamate的定量

选择规格:
1set
现货
 
活动进行中
试剂盒内含
产品概述
原理
操作步骤
实验例
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glutamine Assay Kit-WST    谷氨酰胺的定量检测

NO.3.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

1607220085966457.png

产品概述

谷氨酸不仅用于蛋白质和谷胱甘肽的生物合成,而且还作为神经递质发挥重要作用,谷氨酸过多被认为是引起神经退行性疾病如阿尔茨海默氏病的原因。根据文献报道,胱氨酸/谷氨酸的转运蛋白(xCT)具有吸收胱氨酸放出谷氨酸的功能,而抑制xCT会诱导细胞发生铁依赖性的死亡—铁死亡,近年来针对xCT的癌症研究越来越多。

Glutamate Assay Kit-WST是谷氨酸的定量检测试剂盒。细胞培养基中或细胞内的谷氨酸都可以通过WST的还原反应进行定量,谷氨酸定量的最低浓度为5 μmol/l。此外,本试剂盒还可以使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酸进行定量。此外,本试剂盒还包含谷氨酸标准溶液,可用于通过制作标准曲线来定量样品中谷氨酸的浓度。

 

image.png

操作步骤

只需将细胞培养上清液或组织/细胞裂解溶液转移到孔板中,加入试剂后孵育即可。

image.png

实验例

标准曲线的实验例:

样品中的谷氨酸浓度可通过使用该试剂盒的谷氨酸标准溶液制作标准曲线来确定。如果谷氨酸浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

1609314887231458.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

image.png

铁死亡研究中谷氨酸和谷胱甘肽的检测实验例:

据报道通过弹性蛋白,抑制胱氨酸/谷氨酸转运体(xCT)造成铁依赖性的细胞死亡,即细胞铁死亡。在通过弹性蛋白处理后的A549细胞中,确认谷氨酸的释放量和细胞内谷胱甘肽的量。结果显示,通过弹性蛋白处理的细胞中谷氨酸释放的量减少,抑制胱氨酸的摄取,从而导致谷胱甘肽的量减少。

image.png

Sulfasalazine (SSZ) 引起的细胞内代谢变化实验例:

将已知会抑制胱氨酸/谷氨酸转运体(xCT)的Sulfasalazine(SSZ)加入到A549细胞后,确认谷氨酸释放量、细胞内ATP、α-酮戊二酸(α-KG)、谷胱甘肽(GSH)以及ROS的变化。

结果显示,SSZ加入后细胞内ATP、谷胱甘肽(GSH)和谷氨酸释放量减少,细胞内α-酮戊二酸和ROS增加。1612749142364629.png

<使用产品>

· 细胞内GSH:GSSG/GSH Quantification Kit II(货号:G263)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ROS:ROS Assay Kit -Highly Sensitive DCFH-DA-(货号:R252)⬅电脑浏览点击品名(手机浏览点击此处)

· 细胞内ATP:ATP Assay Kit-Luminescence(货号:A550)

· 细胞内α-KG:α-Ketoglutarate Assay Kit-Fluorometric(货号:K261)

<实验条件>

细胞:A549细胞 (1 x 106 cells)  药物处理时间:48 h

1622087224726487.png

1622087244529743.png1622087268638819.png

参考文献) Shogo Okazaki et al.,”Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma”.Cancer Sci.,2019,doi:10.1111/cas.14182.

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量是多少?
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 24个样品(参照下图)

谷氨酸标准溶液和样品的96孔板排列示意图(n=3)

1609381817863934.png

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。

※Working solution配制后,避光室温条件下4 h稳定。当暴露于光线下,溶液的颜色会变成褐色。

Q3:是否可以定量D-Glutamate?
A3:该试剂盒是用于L-Glutamate定量,无法定量D-Glutamate。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酸浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解样品也可以-20°C保存1个月。 但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酸浓度可能低于检测限(5 µmol/l),谷氨酸浓度低于5 µmol/l的样品无法用该试剂盒检测。

如果待测样品被稀释,则稀释样品中含有的谷氨酸浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酸浓度调整到最低检测限以上。

Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622087017370785.png

参考文献

1)Cobler,L.et al.,”xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction”,Oncotarget,2018,9,32280-32297.

2)Tobias,M.et al.,”Role of GPX4 in ferroptosis and its pharmacological implication”,Free Radical Bioglogy and Medicine,2019,133,144-152.

 

3)K. Danchana, H. Iwasaki, K. Ochiai, H. Namba, T. Kaneta, “Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples”, Microchem. J., 2022, doi:10.1016/j.microc.2022.107513.

4)Z. Xie, T. Kawasaki, H. Zhou, D. Okuzaki, N. Okada and M. Tachbana, “Targeting GGT1 Eliminates the Tumor-Promoting Effect and Enhanced Immunosuppressive Function of Myeloid-Derived Suppressor Cells Caused by G-CSF”, Front. Pharmacol., 2022, doi:10.3389/fphar.2022.873792.

Glutamine Assay Kit-WST试剂盒货号:G268

Glutamine Assay Kit-WST试剂盒货号:G268
谷氨酰胺定量检测试剂盒
Glutamine Assay Kit-WST
商品信息
储存条件:0-5度保存,避光防潮
运输条件:室温

特点:

● 享有显色底物WST专利

● 用于L-Glutamine的定量

选择规格:
1set
现货
产品解说
活动进行中
试剂盒内含
产品概述
原理
操作步骤
实验例
常见问题Q&A
参考文献

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽定量

NO.3.    Glutamate Assay Kit-WST    谷氨酸的定量检测

NO.4.    Liperfluo    细胞脂质过氧化物检测

NO.5.    Mito-FerroGreen    铁离子荧光探针

试剂盒内含

1607220500456163.png

产品概述

谷氨酰胺是TCA循环的中间体α-酮戊二酸的主要来源,并且是用于核酸和其他氨基酸合成及能量产生的重要物质。根据文献报道特别是在癌细胞中,谷氨酰胺作为底物可促进Glutaminolysis的生成,而Glutaminolysis是产生α-酮戊二酸的途径之一。同时Glutaminolysis还可以消除活性氧并减少氧化型谷胱甘肽。

Glutamine Assay Kit-WST是用于定量检测谷氨酰胺的试剂盒。无论是培养基内还是细胞内的谷氨酰胺均可以通过WST的还原反应进行定量,可检测的最低浓度为5 μmol/l。此外,本试剂盒还可使用96孔板进行多样品批量检测。

原理

本试剂盒通过WST的还原反应对细胞和培养基中的谷氨酰胺进行定量。此外,本试剂盒还包含谷氨酰胺标准溶液,可用于通过制作标准曲线来定量样品中谷氨酰胺的浓度。

1606449794882504.png

操作步骤

*向谷氨酰胺标准溶液和含有谷氨酰胺酶的样品孔中加入谷氨酰胺酶溶液,并在样品(不含谷氨酰胺酶溶液)的每个孔中加Reaction Buffer。

由下式算出检测样品中的谷氨酰胺浓度。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

1606455360524924.png

实验例

标准曲线的实验例:

样品中的谷氨酰胺浓度可通过使用该试剂盒的谷氨酰胺标准溶液制作标准曲线来确定。如果谷氨酰胺浓度为0.5 mmol/l或更高,则可以通过稀释样品进行检测。

image.png

谷氨酰胺和谷氨酸的检测实验例:

将A549细胞接种在6孔板中,用Glutamine Assay Kit-WST和Glutamate Assay Kit-WST分别检测细胞培养上清液中谷氨酰胺和谷氨酸浓度随培养时间的变化。

结果,培养基中的谷氨酰胺浓度随培养时间增加而降低,而谷氨酸浓度则升高。

1606455940746088.png

常见问题Q&A

Q1:一个试剂盒可以检测样品的数量。
A1:制备标准曲线和样品(n=3),可以检测的样品数量如下所示。

100 tests

样品数量(n=3) 12个样品(参照下图)

谷氨酰胺标准溶液和样品的96孔板排列示意图(n=3)

image.png

 

*当n=3时,至少需要240 μl(每孔40 μl×6孔)。

样品中的谷氨酰胺浓度(mmol/l)=(含有谷氨酰胺酶溶液)-(不含谷氨酰胺酶溶液)

Q2:配制后的Working solution可以保存多久?
A2:Working solution无法保存,需要现配现用。此外光会影响Working solution的稳定性,所以配制后请避光。
Q3:是否可以定量D-Glutamine?
A3:该试剂盒是用于L-Glutamine定量,无法定量D-Glutamine。
Q4:是否可以检测含有还原性物质的样品?
A4:如果样品中含有还原性的物质,则WST染料也会发生显色,此时无法准确定量谷氨酰胺浓度。实验中如遇到以上情况,可以准备药物对照(不含细胞含药物的培养基+试剂)。
Q5:待测样品可以保存吗?
A5:我们确认过细胞培养上清液样品可以-20°C保存1个月。

细胞裂解液样品也可以-20°C保存1个月。但是,在保存之前请使用试剂盒中的Filtration Tube进行脱蛋白处理。

Q6:为什么我的样品孔没有显色?
A6:样品中的谷氨酰胺浓度可能低于检测限(5 µmol/l),谷氨酰胺浓度低于5 µmol/l的样品无法用该试剂盒检测。如果待测样品被稀释,则稀释样品中含有的谷氨酰胺浓度可能低于5 µmol/l。请减少稀释比例,从而将检测样品的谷氨酰胺浓度调整到最低检测限以上。
Q7:是否可以使用450 nm以外波长的滤光片进行检测?
A7:也可以使用490 nm的滤光片。但是,吸光度会低于在450nm处的吸光度。(见下图)

1622086833365247.png

参考文献

1、K. Hayashima, H. Katoh, “Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis”, J. Biol. Chem., 2022, doi:10.1016/j.jbc.2022.101703.

2、R. Imamura, S. Kitagawa, T. Kubo, A. Irie, T. Kariu, M. Yoneda, T. Kamba, T. Imamura, “Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD‐L1 expression by C5a”, Prostate, 2020, doi:10.1002/pros.24090.

3、S. Liu, J. Washio, S. Sato, Y. Abiko, Y. Shinohara, Y. Kobayashi, H. Otani, S. Sasaki, X. Wang and N. Takahashi, “Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions”, 2022, Int. J. Mol. Sci., doi:10.1016/j.snb.2021.130554.

4、M Chen, G Wang, Z Xu, J Sun, B Liu, L Chang, J Gu, Y Ruan, X Gao,S Song,Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer,Cellular Oncology, 2023,doi:https://doi.org/10.1007/s13402-023-00854-1.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

Cell Counting Kit-Luminescence试剂盒货号:CK18

Cell Counting Kit-Luminescence试剂盒货号:CK18
细胞活性(ATP检测)
ATP Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 操作简便,检测仅需10分钟

● 灵敏度高,微量细胞也可检测

● 悬浮细胞和原代细胞适合

选择规格:
200 tests
600 tests
1000 tests
2000 tests
现货
产品解说
活动进行中
产品原理
实验注意事项
实验操作步骤
参考文献

产品解说

 

活动进行中

订购满5000元,300元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8    细胞增殖毒性检测

NO.2.    Cytotoxicity LDH Assay Kit-WST    乳酸脱氢酶(LDH)检测

NO.3.    Caspase-3 Assay Kit-Colorimetric-    细胞凋亡检测

NO.4.    Annexin V, FITC Apoptosis Detection Kit    细胞凋亡检测

NO.5.    ROS Assay Kit -Highly Sensitive DCFH-DA-    ROS检测

产品原理

ATP是生物体内最直接的能量来源,在肌肉收缩、代谢反应、主动运输等方面被广泛使用,甚至被称作生物体内的能量货币。同仁化学研究所开发的Cell Counting Kit-Luminescence试剂盒是一种通过Luciferase来确定细胞中的腺苷三磷酸(ATP)的细胞增殖-毒性检测试剂盒。

本试剂盒只需将各试剂混合后加入孔板,10 分钟后即可检测。不需要去除培养基、清洗细胞等复杂的操作。此外,本试剂盒还有诸如发光的半衰期在3 小时以上、数据的重现性高 、兼容96孔板 、384孔板的多样品检测等诸多优点。

1622096109221126.png

图1. Cell Counting Kit Luminescence 检测原理

实验注意事项

检测方法:多功能酶标仪

检测结果:化学发光值

image.png

注意:该试剂盒只能比较实验组对照组结果,但是不能完全定量检测

(试剂盒内不含标准品)

实验操作步骤

1. 白色 96 孔板中,每孔加入 100 μl 细胞悬液(白色 384 孔板,每孔加入 25 μl 细胞悬液)。

*为了获得更准确的检测结果,建议每个实验组至少设置三个复孔(n=3)。

2. 各孔中加入 100 μl Working solution(白色 384 孔板,每孔加入 25 μl Working solution)。

*气泡会对实验结果产生影响,如果孔中有气泡请尽量清除。 使用电动移液器时,建议使用反向吸液模式(RevPIP Mode)。

*加入 Working solution 后,建议用酶标仪的振荡混匀功能震荡 2 min。由于光照会影响检测结果,如果必须在 有光源的地方震荡,建议用铝箔纸包覆孔板。

3. 将孔板静置于温度设定在 25℃的酶标仪内 10 min。

*如果酶标仪没有温度设定的功能,请将孔板至于 25℃培养箱或 25℃左右室温下,避光培养 10 min。

*为了保证发光信号的稳定性,建议此处的培养时间不要低于 10 min。

4. 检测发光值(RLU)。

CCK-L,仪器检测实验例,详见如下:(实验例仅供参考)

细胞内ATP活性检测(CCK-L)的仪器设置

参考文献

编号 文献 IF
1 Impact   of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy
on the outcomes in patients with refractory lung cancer, ESMO Open,2021,   6(2):100094
2021 6.5
2 SIRT3-Mediated   SOD2 and PGC-1α Contribute to Chemoresistance in Colorectal Cancer Cells   ,Annals of Surgical Oncology,2021, 28(8):4720-4732 2021 5.3
3 An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity,Cellular & Molecular Biology Letters, 2023,doi.org/10.1186/s11658-023-00461-w 2023 8.3

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297

Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒货号:E297
氧消耗量检测试剂盒
Oxygen Consumption Rate(OCR) Plate Assay Kit
商品信息
储存条件:-20度保存
运输条件:室温

特点:

 

● 适用于普通荧光酶标仪

● 不需要昂贵的仪器、特殊介质和孔板

● 带OCR计算表的一体式试剂盒

下载说明书
选择规格:
100tests
现货
产品规格
OCR是线粒体功能的重要指标
产品概述
与现有方法比较
与石英分析仪对比
实验例:抑制线粒体电子传输链
实验例:细胞最大呼吸能力评估
实验例:不同细胞系代谢途径依赖性的比较
Q&A
参考文献

产品规格

1669943130546083.png

OCR是线粒体功能的重要指标

由于氧主要在线粒体氧化磷酸化产生三磷酸腺苷(ATP)的过程中消耗,因此其耗氧率(OCR)是分析线粒体功能的指标。众所周知,癌细胞通过糖酵解途径产生ATP,其效率低于氧化磷酸化。在免疫细胞中,氧化磷酸化的优势是抑制抗肿瘤,而糖酵解途径的优势促进抗肿瘤作用。因此,细胞的OCR作为能量代谢的检测指标。

图片1.png

图片2.png

产品概述

细胞外氧消耗量试剂盒包括氧气探针,其具有随着介质中氧气浓度的降低而增加荧光强度的特性,矿物油阻止氧气从空气中流入。

在用荧光酶标仪根据细胞外氧浓度测量荧光强度之后,根据Stern-Volmer方程计算细胞的OCR(自动计算表)。

1670202251340521.png1670202328366763.png

*该产品在群马大学Toshitada Yoshihara博士的指导下实现了产品化。

与现有方法比较

到目前为止,OCR测量需要昂贵的设备,如通量分析仪,实时动态检测酶标仪,以及酶标仪的功能调节。该试剂盒推荐给初此使用的人,因为它可以与常规荧光酶标仪一起使用,并附带所有必要试剂的完整包装。

image.png

与石英分析仪对比

石英分析仪(XFe24)和本试剂盒在相同条件下(细胞类型、细胞数量和FCCP浓度)进行测量。

得到XFe24与本试剂盒相关氧消耗速度变化的数据。

图片6.png

细胞种类: HepG2

细胞数: 5×10⁴ cells/well

试剂: FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone)

FCCP 浓度: 2 μmol/l

实验例:抑制线粒体电子传输链

用抗霉素刺激大鼠细胞,评估线粒体电子运输链抑制后细胞状态的变化,检测多种指标。

结果表明,电子传输链的抑制导致(1)线粒体膜电位的降低和(2)OCR的降低。此外,观察到(3)整个糖酵解途径的NAD+/NADH比率降低,这是由于丙酮酸到乳酸的代谢增加,以维持糖酵解通路;(4)由于活性氧(ROS)增加,GSH耗竭;(6)由于谷胱甘肽生物合成所需NADH减少,NADP+/NADPH比率增加。

图片10.png

1669944135247426.png图片12.png1669944181694051.png

图片14.png1669944219241446.png图片16.png

图片17.png

实验例:细胞最大呼吸能力评估

在HepG2细胞中,通过FCCP刺激后OCR值的变化来评估细胞的最大呼吸。

在FCCP浓度分别2µmol/l和4µmol/l 测量OCR。与2µmol/l相比,在4µmol/l时观察到OCR降低,表明在2µmol/l FCCP时最大呼吸。
图片9.png1669943932873010.png

 

细胞: HepG2

细胞数: 5×104 cells/well

试剂: FCCP

FCCP 浓度 2, 4 μmol/l

实验例:不同细胞系代谢途径依赖性的比较

    许多癌症细胞通过糖酵解途径产生ATP。另一方面,最近有报道称,糖酵解途径被抑制的癌症细胞,可通过增强线粒体功能将能量代谢转移到OXPHOS而达到存活的目的,代谢途径的依赖性因细胞系不同而异。

基于乳酸生成、ATP水平和OCR值,比较了两种癌症细胞HeLa和HepG2中OXPHOS和糖酵解的依赖性关系。

<通过乳酸生产和ATP水平进行评估>

我们证实了当寡霉素刺激和糖酵解途径中的 2-Deoxy-D-glucose(2-DG)抑制OXPHOS的ATP合成时,ATP和乳酸产生的变化。结果表明,HeLa细胞依赖于糖酵解,HepG2细胞依赖于OXPHOS合成ATP。

*有关结果的更多信息,请参下方的“所用技术和产品的补充信息”部分。

所用技术和产品的补充信息
<通过乳酸产生和ATP的量进行评估>

当OXPHOS在HeLa细胞中被抑制时,ATP水平保持不变(①),乳酸产生增加(②)。这表明,即使OXPHOS被抑制,糖酵解也可以被进一步激活。相反,当糖酵解被抑制时,ATP水平显著降低(③),表明能量的产生依赖于糖酵解。另一方面,当OXPHOS在HepG2细胞中被抑制时,乳酸的产生增加(④),表明细胞试图通过增强糖酵解来补偿能量的产生,但ATP水平仍然降低(⑤)。这意味着,即使糖酵解增加,ATP的产生也没有得到足够的代偿。此外,当糖酵解被抑制时,ATP水平下降更多(⑥),这表明HepG2细胞的能量产生更多地依赖于OXPHOS而不是糖酵解。

5.jpg

本数据同时使用了:糖酵解/氧化磷酸化检测试剂盒—Glycolysis/OXPHOS Assay Kit(G270)

<OCR值评估>

使用相同数量的细胞,我们测量了当用线粒体解偶联剂FCCP刺激细胞来促进细胞耗氧量时的OCR值。结果表明,HepG2细胞比HeLa细胞具有更高的OCR值,这表明对OXPHOS的依赖性更强,这与ATP水平和乳酸产生的结果有关。

9.jpg

〈实验条件〉

细胞系:HeLa、HepG2

细胞数:5×104个细胞/孔

刺激:FCCP

浓度:2μmol/l

使用:Oxygen Consumption Rate(OCR) Plate Assay Kit-氧消耗量检测试剂盒(货号:E297)进行评估

Q&A

Q:本试剂盒可以检测多少样本?
A:当测试一种细胞类型的相同数量的细胞时,可以测量24个样品。

*如果实验中使用了两种以上的细胞类型或多个细胞编号,则必须准备单独的空白和对照,并且可以测量的样本数量会有所不同。

有关详细信息,请参考手册中的板布局示例。

Q:悬浮细胞有什么实验案例吗?
A:我们准备了一个大鼠细胞实验的例子。<说明>

(1) 将大鼠细胞(3.0×106细胞/ml)悬浮于RPMI培养基中作为空白3,将大鼠细胞(3.0×106细胞/ml)悬于工作溶液中作为对照或样品。将细胞接种在100µl(300000个细胞/孔)的96孔黑色透明底部微孔板中。

 

(2) 向空白1中加入100µl RPMI培养基,向空白2中加入100μl工作溶液。

 

(3) 将微孔板放置在预先设定为37°C的读板器中,孵育30分钟。

 

(4) 向空白1、空白2、空白3和对照品中加入10µl RPMI培养基。

 

(5) 将用RPMI培养基稀释的样品溶液(抗霉素或FCCP溶液)分10µl加入样品中。

 

(6) 加入样品溶液后,立即向每个孔中加入一滴矿物油。

 

(7) 将微板放置在37°C的平板读数器中,孵育5分钟。

 

(8) 在一个时间过程中,用荧光板读取器每10分钟测量一次强度,持续200分钟(Ex:500nm,Em:650nm,底部读数)。

(9) OCR值通过将获得的强度值输入下载的专用Excel计算表来计算。

每孔所需的样品和试剂数量。

image.png

1669944613174749.png

Q:如何使用此试剂盒计算OCR?
A:请使用Excel计算表并遵循以下说明

 

<OCR计算程序概述>

(1) 将OCR测量获得的强度值输入计算表,使用Stern-Volmer公式自动计算氧含量(nmol)。

(2) 根据时间(min)与氧含量(nmol)的关系图,检查所有测量条件下获得的线性范围。

(3) 计算步骤(2)中确认的时间(min)和氧含量(nmol)范围内的斜率。

(4) 根据步骤(3)中计算的斜率计算OCR(pmol/min)。

有关详细信息,请参阅手册中的“分析”。

*需要计算OCR的客户请至【网站首页】-【技术支持】-【实验工具】即可找到OCR计算器

 

Q:矿物油对细胞有细胞毒性吗?
A: 当通过Cell Counting Kit-8细胞毒性测定测定时,在用矿物油处理的细胞中未观察到毒性。

 

Q:为什么使用此试剂盒需要搭配可控温的酶标仪?
A: 在添加试剂和矿物油后,将微孔板与培养箱(或加热块、恒温室等)一起孵育,酶标仪中的温差将影响OCR结果。这导致数据再现性下降。因此,请使用温度可控的酶标仪。

<常规操作>

E297_2023_05.jpg

步骤3、7用于悬浮细胞,步骤5、9用于贴壁细胞

<孵育环境对结果的影响>

E297_2023_06.jpg

Q:OCR检测后如何测量细胞数
A:使用核酸探针(代码:H342)Hoechst 33342测量每个孔的细胞数,这是该方案的一个示例。

<说明>

(1) 将细胞接种到孔中进行OCR测量(液体体积:100μl/孔)。

(2) 将制备校准曲线的细胞接种到孔中(液体体积:100μl/孔)。

(3) OCR根据说明书进行测量。

(4) 向孔中加入10µl/孔的介质进行校准(使介质体积与OCR测量孔的体积对齐至110µl/孔)。

(5) 将用培养基稀释的Hoechst 33342溶液(10µg/ml)以100µl/孔的速度添加到所有孔中。

*从油的顶部添加OCR测量孔。

(6) 在37°C下培养30分钟。

(7) 用荧光板读数器(Ex:350nm,Em:461nm)测量。

(8) 制备校准曲线(X轴:细胞数量,Y轴:荧光强度),并计算用于OCR测量的孔中的细胞数量。

图片21.png

Q:可以长期存储工作液吗
A 工作液不能储存,需要现配现用。
Q:氧探针或矿物油的反复冷冻和解冻是否会影响测定?
A 我们已经证实,氧气探针和矿物油的反复冻融循环对测定没有影响。
Q:对照组与实验组之间OCR没有差异,有哪些可能得原因?
A请检查以下两个实验条件。

(1) 如果在测量过程中温度发生变化,可能会影响OCR结果。请确保以下两个步骤完全按照说明书执行。

・矿物油、溶剂和稀释溶剂等溶液在使用前应预热至37°C左右。

・加入试剂和矿物油后,请使用温度可控的酶标仪进行孵育。

请参阅Q&A“为什么使用此试剂盒需要搭配可控温的酶标仪?”。

(2) 建议在最终计算前,优化单元格数据。如果细胞数量较低,实验组和对照组之间的差异也可能并不显著。

【带有细胞数和试剂处理的OCR值(预期结果图)】

 

参考文献

文献 研究对象 引用文献
1 细胞(HepG2) K.Saito.et al“Obesity-induced metabolic imbalance allosterically modulates CtBP2 to inhibit PPAR-alpha transcriptional activity”2023,Journal of Biological Chemistry,doi.org/10.1016/j.jbc.2023.104890
2 细胞(NIH3T3-L1) S. Oki, S. Kageyama, Y. Morioka and T. Namba, “Malonate induces the browning of white adipose tissue in high-fat diet induced obesity model”Biochem Biophys Res Commun.2023, doi:10.1016/j.bbrc.2023.08.054.
3 细胞

(Primary Hepatocyte)

S. Tsuno, K. Harada, M. Horikoshi, M. Mita, T. Kitaguchi, M. Y. Hirai, M. Matsumoto and T. Tsubo , ‘Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes’, FEBS Open Bio2023, doi:10.1002/2211-5463.13744.
  4 精子 “Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage”, Scientific Reports 2023 , doi: 10.1038/s41598-023-48550-2.
5 细胞(HepG2) Takeo Nakanishi.et alAn implication of the mitochondrial carrier SLC25A3 as an oxidative stress modulator in NAFLDExperimental Cell Research.,2023,431,113740

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552

ADP/ATP比率检测试剂盒—ADP/ATP Ratio Assay Kit-Luminescence货号:A552
ADP/ATP比率检测试剂盒
ADP/ATP Ratio Assay Kit-Luminescence
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

●可获得稳定的ADP/ATP比值

●溶液配制后可以保存

●冷藏保存(无需解冻操作)

下载说明书
选择规格:
100tests
现货
产品解说
产品概述
产品文献
规格性状
检测原理
与其他公司产品比较
实验例
常见问题Q&A

产品解说

 

产品概述

通常情况下,当细胞内ATP浓度降低时,会由二磷酸腺苷(ADP)重新合成为ATP,以维持细胞内一定的ATP浓度。当产生ATP的相关代谢发生紊乱时,ADP无法再合成为ATP,ATP却不断地分解成为ADP,导致ADP/ATP的比例上升。而ADP/ATP比率的变化与细胞凋亡、细胞自噬、能量代谢等诸多途径息息相关,因此经常被作为细胞活性的指标之一检测。

微信截图_20211130130502.png

产品文献

1、Hao Gu, Yuhui Zhu, Jiawei Yang, Ruixue Jiang, Yuwei Deng, Anshuo Li, Yingjing Fang, Qianju Wu, Honghuan Tu, Haishuang Chang, Jin Wen, Xinquan Jiang,”Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.Advanced Science”,2023, Advanced Science, doi:10.1002/advs.202302136

规格性状

1642572478856777.png

检测原理

本试剂盒可以检测细胞中ADP与ATP的比率。首先用萤火虫荧光素酶法检测细胞内的ATP。

微信截图_20211130130953.png

之后用酶将细胞内的ADP全部转化为ATP,再用相同的发光原理检测ATP,即可算出细胞内ADP/ATP的比率。

微信截图_20211130131009.png

与其他公司产品比较

1638249168235182.png

本试剂盒的检测结果,不受ATP和ADP的总量影响,比值的结果稳定。

微信截图_20211130131146.png

实验例

使用Staurosporine诱导细胞凋亡后,用本试剂盒检测细胞中ADP/ATP的比值。另外,用激光共聚焦显微镜和流式细胞仪检测Annexin V-FITC/PI染料标记的Staurosporine诱导凋亡的细胞。

结果显示,Staurosporine诱导后的细胞中ADP/ATP的比例明显上升。相同条件的细胞中也观察到磷脂酰丝氨酸(PS)的外翻以及细胞膜破损。说明凋亡细胞中的ADP/ATP的比率上升。

 

<ADP/ATP比的检测结果>

 

1638249248457134.png

1638336486572893.png

常见问题Q&A

Q:一个试剂盒可以检测多少个样品?
A:按照每个样品3个复孔计算,可以检测32个样品,96孔板的孔板设置请参考说明书。
Q:检测时是否可以用白色96孔板以外的孔板?
A:黑色和透明孔板都会造成发光强度的降低,透明孔板还会导致背景升高。因此建议使用白色96孔板。
Q:配制好的working solution是否可以保存?
A:本试剂盒共包含4种working solution,ADP working solution无法保存,请现配现用。其他3种的保存条件及保存时间如下:

1638336266497998.png

Q:确定最佳细胞数的方法是什么?
A:配制梯度浓度的细胞悬液播种至孔板中,按照最终实验相同的条件进行培养。使用本试剂盒制作标准曲线(参照图1),选择呈直线性的范围,并且ADP/ATP比率(参考图2)在相对稳定的范围内进行最终实验的检测。下图的情况,最细胞数的范围是2,000~4,000个。

1638336413353486.png

Q:发光法检测波长为多少?
A:由于是通过萤光素检测,所以检测波长为556 nm。

MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

 

● 特异性的在细胞中线粒体内聚集

● 可以检测线粒体膜内的脂质过氧化物

● 可以在488 nm和535 nm的荧光波长下进行检测

下载说明书
选择规格:
5μg*3
现货
 
铁死亡检测方案
产品概述
检测原理
实验例
参考文献

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

1622438023765086.png

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

image.png

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

image.png

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

image.png

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

image.png

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

image.png

参考文献

1) K. Shioji K, Y. Oyama, K. Okuma and H. Nakagawa, “Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria.”, Bioorg Med Chem Lett., 2010, 20, (13), 3911.

2) S. Oka, J. Leon, K. Sakumi, T. Ide, D. Kang, F. M. LaFerla and Y. Nakabeppu, “Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease”, Scientific Reports ., 2016, DOI: 10.1038/srep37889 , .

3) S. Nakamura, A. Nakanishi, M. Takazawa, S. Okihiro, S. Urano and K. Fukui, “Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: Analysis of a time-lapse live cell imaging system”, Free Radical Research., 2016, 50, (11), 1214.

4) M. Akimoto, R. Maruyama, Y. Kawabata, Y. Tajima and K. Takenaga, “Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent necroptosis”, Cell Death Dis., 2018, 9, 804.

5) M. Álvarez-Córdoba, A. Fernández Khoury, M. Villanueva-Paz, C. Gómez-Navarro, I. Villalón-García, J. M. Suárez-Rivero, S. Povea-Cabello, M. Mata, D. Cotán, M. Talaverón-Rey, A. J. Pérez-Pulido, J. J. Salas, E. M. Pérez-Villegas, A. Díaz-Quintana, J. A. Armengol, J. A. Sánchez-Alcázar , “Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation.”, Mol. Neurobiol. ., 2019, 56, (5), 3638.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05

Si-DMA for Mitochondrial Singlet Oxygen Imaging试剂货号:MT05
线粒体内单线态氧荧光探针试剂
Si-DMA for Mitochondrial Singlet Oxygen Imaging
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C35H37ClN2Si

分子量:

549.22

特点:

 

● 能够对活细胞进行荧光成像

● 对单线态氧的高选择性

下载说明书
产品文献
SDS下载
选择规格:
2μg
现货
 
线粒体检测方案
产品概述
原理
荧光特性
反应特异性
实验例
常见问题Q&A
参考文献

产品概述

       单线态氧(Singlet Oxygen,1O2)是一种具有强氧化性的活性氧(ROS),是造成皮肤斑点及皱纹的重要因素。在化妆品等研究中,去除单线态氧是重要的研究目的。在癌症研究领域,单线态氧在光动力疗法(PDT:一种采用光敏药物和激光活化治疗肿瘤的新兴抗癌疗法)中起到关键作用。因此检测活细胞内的单线态氧对于了解PDT的抗癌机理至关重要。但是现有的荧光探针由于不能穿透细胞膜,所以无法用于活细胞检测。

Majima等人合成了一种由含硅罗丹明和蒽环构成的新型远红外荧光探针Si-DMA,分别作为发色团和单线态氧反应位点。当存在单线态氧时会在Si-DMA的蒽环部位生成内过氧化物,Si-DMA的荧光强度会增强1)。在7种不同活性氧中,Si-DMA能够特异性地检测单线态氧(图3)。另外在用5-氨基乙酰丙酸(5-ALA,一种血红素前体)处理细胞后,Si-DMA可以实时观察到线粒体中原卟啉IX产生单线态氧的变化情况(图4)。

原理

b1355d49e26be976070035409c8676611a8e493d.jpg

图1. Si-DMA的细胞染色原理

荧光特性

MT05光谱图R.jpg

图2. Si-DMA与单线态氧反应后的激发和发射光谱

反应特异性

1606815534394483.jpg

图3. Si-DMA对各种ROS的选择性

实验例

实验例1  荧光显微镜观察用5-氨基乙酰丙酸 (5-ALA) 处理后的HeLa细胞中的单线态氧

1. 接种200 μl HeLa细胞 (2.4×105 cells/ml) 在μ-slide 8孔板 (ibidi) ,培养基为DMEM (10%FBS,1%青霉素-链霉素),

在37℃ 5% CO2培养箱中过夜培养。

2. 用200 μl Hanks’ HEPES 缓冲液洗涤细胞2次。

3. 在μ-slide 8孔板中加入200 μl 含5-ALA的Hanks’ HEPES 缓冲液 (150 μg/ml),在37℃ 5% CO2培养箱中培养4 h。

4. 用Hanks’ HEPES 缓冲液洗涤细胞2次。

5. 加入200 μl Si-DMA工作液(40 nmol/l), 在37℃ 5% CO2培养箱中培养45 min。

6. 用200 μl Hanks’ HEPES缓冲液洗涤细胞2次。

7. 加入200 μl Hanks’ HEPES缓冲液,并用荧光显微镜进行观察。

1606450527281710.jpg

Si-DMA检测5-ALA处理的HeLa细胞线粒体中的单线态氧的荧光成像

5-ALA处理过的HeLa细胞经过2.5 min照射后,Si-DMA的荧光增强,因此Si-DMA可以用于实时监测线粒体中原卟啉IX产生的单线态氧。

滤镜 (波长/带通型滤光片)

荧光成像:600±25 nm (Ex), 685±25 nm (Em)

实验例2  线粒体中的单线态氧检测 

MT05实验例2.jpg

用终浓度为50 μmol/l的过氧化氢和终浓度为50 μmol/l的次氯酸刺激或不刺激HeLa细胞,用Si-DMA检测到细胞中产生的单线态氧。和线粒体染料(MitoBright Green: MT06)共染,特异性地在线粒体中检测到了单线态氧。

波长(激发波长/发射波长)

Si-DMA: 600±25 nm/685±25 nm

MitoBright Green: 488 nm/501-563 nm

实验例3  观察用H2O2处理Primary Hepatocytes细胞后产生的单线态氧

MT05实验例3.jpg

Si-DMA检测用H2O2刺激Primary Hepatocytes细胞后产生的单线态氧荧光成像

实验条件:

用10 mM H2O2刺激Primary Hepatocytes 20 min。

细胞数量:1×104/dish

容器:Nest 15 mm共聚焦培养皿801002

染色条件:在37℃ 5% CO2培养箱中染色45 min

Si-DMA工作液浓度:100 nmol/l

检测仪器:激光共聚焦显微镜

仪器品牌:Leica,Cambridge, UK

仪器型号:BMI-6000

Ex:600 nm,Em: 685 nm

(以上数据由东方肝胆外科医院信号转导实验室友情提供)

常见问题Q&A

Q1、本试剂盒与现有方法相比有什么优势?
A1:本试剂盒的优点是“能够对活细胞进行荧光成像”和“对单线态氧的高选择性”。在操作说明中有详细的实验数据。
Q2、DMSO Stock Solution的稳定性怎么样?
A2:DMSO Stock Solution配制后在-20℃及避光条件下可以保存大约1个月,建议根据每次的用量进行分装保存。
Q3、配制Working Solution可以用Hanks’ HEPES以外的缓冲液吗?
A3:还可以用HBSS缓冲液。
Q4、Working Solution的稳定性怎么样?
A4:Working Solution不稳定,请在配制当天使用。

参考文献

1、S. Kim, T. Tachikawa, M. Fujitsuka, T. Majima, “Far-Red Fluorescence Probe for Monitoring Singlet Oxygen during Photodyanamic Therapy”, J. Am. Chem. Soc., 2014, 136 (33), 11707.

2、S. Bekeschus, A. Mueller, U. Gaipl, KD. Weltmann, “Physical plasma elicits immunogenic cancer cell death and mitochondrial singlet oxygen”, TRPMS., 2017, 99, DOI:10.1109/TRPMS.2017.2766027.

3、Y. D. Riani, T. Matsuda, K. Takemoto and T. Nagai, “Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation “, BMC Biol, 2018, 16, 50.

4、T. Guo, T. Liu, Y. Sun, X. Liu, R. Xiong, H. Li, Z. Li, Z. Zhang, Z. Tian, and Y. Tian, “Sonodynamic therapy inhibits palmitateinduced beta cell dysfunction via PINK1/ Parkin-dependent mitophagy”, Cell Death Dis., 2019, 10, 457.

5、K. Murotomi, A. Umeno, S, Sugino and Y. Yoshida. , “Quantitative kinetics of intracellular singlet oxygen generation using a fluorescence probe”, Sci Rep, 2020, 10, 10616.

6、Y. Fujita, M. Iketani, M. Ito, I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”, 2022, doi:10.1016/j.exger.2022.111866.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

铁离子荧光探针—Mito-FerroGreen货号:M489

铁离子荧光探针—Mito-FerroGreen货号:M489
铁死亡荧光试剂 (Fe2+荧光法)
Mito-FerroGreen
商品信息
储存条件:-20度保存,避光
运输条件:室温

特点:

 

● 对二价铁离子的高度选择性和高灵敏度

● 适用于通用滤光片

下载说明书
产品文献
宣传资料下载
选择规格:
50μg*2
现货
铁死亡检测方案
产品概述
测定原理
产品特点
实验例
参考文献
常见问题Q&A
规格性状

产品概述

研究证实铁是生物体内量最多的过渡金属元素。其参与多种生理活动。近几年,细胞内的游离铁离子由于具有很高的反应性,和细胞损伤、死亡有一定的关联而得到了越来越多的关注。在细胞内游离铁离子以稳定的Fe2+和 Fe3+形式存在。从细胞内的还原环境,金属转运体及Fe2+的水溶性考虑,认为揭示细胞内Fe2+的行为比Fe3+更重要。Mito-FerroGreen是一种新型荧光探针,用于检测线粒体 (铁硫簇和血红素蛋白的合成场所) 内亚铁离子Fe2+。

该产品已在岐阜药科大学药物化学实验室的 永澤秀子 和 平山祐 博士的指导下开发。Mito-FerroGreen和Fe2+反应后的荧光强度上升不可逆,与Fluo-3(货号:F019)这类可以实时监测钙离子的荧光探针有所不同。

测定原理

image.png

产品特点

铁离子检测试剂的选择

可以根据自己的实验方法和实验仪器选择检测试剂

 

FerroOrange Mito-FerroGreen
细胞内分布 细胞内 线粒体
荧光特性 λex : 543 nm、λem : 580 nm λex : 505 nm、λem : 535 nm
检测仪器 荧光显微镜 荧光显微镜 (FITC、GFP)
(滤镜)
检测对象 活细胞 活细胞
染色次数 24 μg可染色35 mm dish 17块板 50 μg可染色35 mm dish 5块板
(终浓度 1 μmol/l時) (终浓度 5 μmol/l時)

实验例

1.线粒体定位

为了确认Mito-FerroGreen的是否特异性地在线粒体内定位,与线粒体染色试剂(MitoBright Deep Red※)一同进行染色,实验结果证实了Mito-FerroGreen选择性地染色在线粒体内。

向HeLa细胞中添加5μmol/ l的Mito-FerroGreen和200 nmol/l的线粒体染色探针MitoBright Deep Red,并在CO2培养箱中培养30分钟,然后添加100μmol/ l的硫酸铁铵(II),并将混合后的细胞溶液在CO2培养箱中培养1小时后通过观察荧光。

1606291977965574.png

Mito-FerroGreen

激发波长:488 nm

发射波长:500-565 nm

MitoBright Deep Red

激发波长:640 nm

发射波长:656-700 nm

2.线粒体内的铁离子荧光成像

在含有血清的MEM培养基中接种HeLa细胞,并加入Mito-FerroGreen,通过荧光检测HeLa细胞众线粒体内的二价铁(左图)。而在添加了铁离子的HeLa细胞中,观察到了Mito-FerroGreen的荧光明显增强(中间图)。在添加了铁螯合剂的细胞中,几乎未观察到Mito-FerroGreen的荧光(右图)。 以这种方式,证实了线粒体中铁含量的差异和荧光强度的差异是成相关性的。

image.png

3.对二价铁离子的高度选择性和高信号

向1ml 50mmol/l HEPES Buffer(pH7.4)中加入2μl 1mol/l Mito-FroGreen、2μl 10mmol/l各种金属以及20μl 1mg/ml酯化酶,在室温下反应1小时后测定荧光强度。

激发波长:500 nm

发射波长:535 nm

image.png

4.适用于通用滤光片

Mito-FerroGreen的激发波长为488nm,最大激发波长可达505nm。

向3ml 50 mmol/l HEPES Buffer (pH7.4) 中加入 6μl 1mol/l Mito-FroGreen、6μl 10mmol/l硫酸铵铁(Ⅱ)以及20μl 1mg/ml酯化酶。在37℃下反应1小时后检测荧光强度。

激发波长:500 nm

发射波长:535 nm

image.png

参考文献

1) T. Hirayama,  S. Kadota, M. Niwa  and  H. Nagasawa, “A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(II)”, Metallomics., 2018, DOI: 10.1039/C8MT00049B

2) T. Issitt, E. Bosseboeuf, N. Winter, N. Dufton, G. Gestri, V. Senatore, A. Chikh, A. Randi, C. Raimondi, “Neuropilin-1 controls endothelial homeostasis by regulating mitochondrial function and iron-dependent oxidative stress via ABCB8”, iScience., 2018,DOI: 10.1016/j.isci.2018.12.005 .

3) E. E. Mon, F. Y. Wei, R. N. R. Ahmad, T. Yamamoto, T. Moroishi and K. Tomizawa, “Regulation of mitochondrial iron homeostasis by siderofexin 2 “, J Physiol Sci., 2018,doi:10.1007/s12576-018-0652-2.

4) M. Fujimaki, N. Furuya, S. Saiki, T. Amo, Y. Imamichi and N. Hattori, “Iron supply via NCOA4-mediated ferritin degradation maintains mitochondrial functions”, Mol. Cell. Biol.., 2019,doi: 10.1128/MCB.00010-19.

5) K. Tomita, M. Fukumoto, K. Itoh, Y. Kuwahara, K. Igarashi, T. Nagasawa, M. Suzuki, A. Kurimasa and T. Sato, “MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells.”, Biochem Biophys Res Commun.., 2019,doi: 10.1016/j.bbrc.2019.08.117.

6) Y. Wang and M. Tang, “PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance”, Environ. Pollut., 2019, 264, doi: 10.1016/j.envpol.2019.07.105.

7) KF. Yambire, C. Rostosky, T. Watanabe, D. Pacheu-Grau, S. Torres-Odio,A. Sanchez-Guerrero,O. Senderovich, EG. Meyron-Holtz,I.Milosevic, J. Frahm, AP. West and N. Raimundo, “Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo.”, Elife, 2019, 3, (8), doi:10.7554/eLife.51031.

8) H. Nishizawa, M. Matsumoto, T. Shindo, D. Saigusa, H. Kato, K. Suzuki, M. Sato, Y. Ishii, H. Shimokawa and K. Igarashi, “Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1″,  J. Biol. Chem.,  2019,doi: 10.1074/jbc.RA119.009548.

9)Y. akashima, A. Hayano and B. Yamanaka, Metabolome analysis reveals excessive glycolysis via PI3K/AKT/mTOR and RAS/MAPK signaling in methotrexate-resistant primary CNS lymphoma-derived cells.”, Clin. Cancer Res., 2020, DOI:10.1158/1078-0432.

常见问题Q&A

Q1:是否可以对酵母进行染色吗?
A1:我们公司有酵母染色的实验例,染色的具体实验步骤请联系我们公司的销售人员。
Q2:推荐使用的滤光片波长是多少?
A2:检测时推荐的滤光片如下:

激发波长:450~500 nm

发射波长:515~550 nm

规格性状

性状:本品溶于乙腈、甲醇、二甲醇。

纯度(HPLC):90.0%以上

荧光光谱:适合测试

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14

mtSOX Deep Red – Mitochondrial Superoxide Detection货号:MT14
线粒体超氧化物检测用荧光染料
mtSOX Deep Red – Mitochondrial Superoxide Detection
商品信息
储存条件:0-5℃,避光
运输条件:室温

特点:

 

● 对超氧化物的选择性高

● 独特的荧光特性(λex: 540 nm; λem: 670 nm)

下载说明书
产品文献
宣传资料下载
选择规格:
100nmol*1
100nmol*3
现货
线粒体检测方案
产品概述
与其他试剂的比较
实验例
常见问题Q&A
产品文献

产品概述

        线粒体在生成ATP的同时会生成超氧化物。正常情况下,细胞的抗氧化酶等物质会保护细胞免受活性氧的伤害。但是,当线粒体功能异常时,活性氧过量积累会造成细胞的各种机能紊乱。因此在评价细胞氧化应激水平时,往往需要同时检测线粒体的膜电位和线粒体的活性氧。

与其他试剂的比较

对各种活性氧的反应选择性

 

mtSOXDeep Red相较于T公司的产品Red,在各种活性氧中,对超氧化物的选择性更高。

1629862891574315.jpg

另外,与其他公司产品所不同的是,mtSOX  Deep Red拥有独特的荧光特性(λex: 540 nm; λem: 670 nm),可以同时进行线粒体膜电位检测试剂(JC-1 货号MT09; MT-1 货号MT13)的共染色实验。

1629862861124132.png

实验例

线粒体超氧化物和线粒体膜电位的同时检测

用HBSS清洗HeLa细胞后,使用mtSOX和同仁化学研究所的线粒体膜电位检测试剂(JC-1 货号MT09或MT-1 货号MT13)进行共染色实验,同时观察线粒体ROS和线粒体膜电位。

结果显示,伴随着线粒体ROS的产生,线粒体膜电位也逐渐降低。

 

<使用JC-1的实验操作>

1629862934419724.png

1629862944672866.png

 

<检测条件>

JC-1:绿Ex=488 nm; Em= 490-520 nm; 红Ex=561 nm; Em= 560-600 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

1629862980246669.png

 

<检测条件>

JC-1:绿Ex=485 nm; Em= 535 nm; 红Ex=535 nm; Em= 595 nm

mtSOX:Ex=550 nm; Em= 675 nm

<使用MT-1的实验操作>

1629862996505369.png

1629863013318934.png

<检测条件>

MT-1: Ex=561 nm; Em= 560-600 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

1629863037884115.png

<检测条件>

MT-1: Ex=545 nm; Em= 600 nm;

mtSOX:Ex=550 nm; Em= 675 nm

细胞内Total ROS和线粒体超氧化物的同时检测

 

用HBSS清洗HeLa细胞后,使用mtSOX和同仁化学研究所的细胞内ROS检测试剂(ROS Assay Kit -Highly Sensitive DCFH-DA- 货号:R252)进行共染色实验,通过线粒体超氧化物诱导剂Antimycin或过氧化氢诱导后进行荧光观察。

结果显示,可以分别观察到细胞内ROS诱导后的荧光增强和线粒体的ROS诱导后的荧光增强。

<实验操作>

1629863053916938.png

1629863075344419.png

 

<Antimycin刺激的结果>

1629863094929292.png

 

<检测条件>

细胞内ROS:  Ex=488 nm; Em= 490-520 nm

mtSOX:Ex=633 nm; Em= 640-700 nm

Scale bar: 10 μm

 

衰老细胞线粒体超氧化物检测

 

提示:脂褐素内源性荧光最小化

脂褐素对细胞衰老研究的影响

众所周知,衰老细胞会积累被称为脂褐素的氧化损伤蛋白质,这些蛋白质不会被溶酶体降解。线粒体作为溶酶体中的不溶性物质,导致荧光观察过程中背景增加。在细胞衰老研究中,有必要尽量减少脂褐素或其他物质对内源性荧光的影响。

使用升级后的荧光探针

我们分别使用T公司的产品和Dojindo公司的mtSOX Deep Red-线粒体超氧化物检测用荧光染料,检测在增殖期(第2代)和衰老(第14代)TIG-1细胞(人胎肺来源的成纤维细胞)中观察到线粒体超氧化物。

结果显示:在T公司的产品(染色浓度:5 μmol/l)的情况下,除了在增殖细胞和衰老细胞中观察到线粒体荧光外,还观察到很强的荧光背景。从未染色细胞的图像中发现该背景荧光是内源性荧光。另一方面,当使用mtSOX Deep Red(染色浓度:1μmol/l)时,可以观察到线粒体超氧化物产生的荧光,而荧光背景的影响很小。在观察线粒体超氧化物时,重要的是比较灵敏度、波长和通道,然后用合适的荧光探针进行观察,以最大限度地减少内源性荧光的产生。

 

1679388833308153.jpg

※mtSOX的最佳浓度因细胞而异。关于不同染色浓度下内源性荧光的不同影响的讨论,请参阅”常见问题Q&A”:解答当我观察衰老细胞时,发现线粒体外的荧光,应该如何处理?。

<实验数据>

本实验数据,由东京都老年病学研究所Fujita Yasunori教授友情提供。

<参考文献>

Y. Fujita, M. Iketani, M. Ito and I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”,  Exp. Gerontol., 2022165, 111866.

 

常见问题Q&A

Q1:mtSOX Deep Red的检测原理是什么?
A1:mtSOX Deep Red被Superoxide特异性氧化后会发出荧光,同时它还可在线粒体处积累,因此可以检测线粒体Superoxide。伴随着Superoxide的增加,线粒体的膜电位消失的话,核小体和细胞质会被染料染色。
Q2:每个试剂盒可以检测多少个样品?
A2:可检测的样品数如下。・ 96-well plate: 1块。

・ ibidi 8-well plate: 6块。

・ 35 mm dish: 5块。

Q3:是否可以用培养基以外的溶液配制Working solution?
A3:可以,可使用HBSS或PBS代替培养基。
Q4:各检测仪器适用的滤光片?
A4:荧光显微镜、流式细胞仪、荧光酶标仪均可检测。

・激光共聚焦显微镜

Ex/Em: 561/640-700 nm (无红色荧光染料共染时)

Ex/Em: 633/640-700 nm (与红色荧光染料共染时)

 

・荧光显微镜

TxRed Filter

 

・荧光酶标仪

Ex/Em: 535–565/660–690 nm

 

 

 

Q5:是否可以刺激后再染色?
A5:在线粒体膜电位正常的前提下是有可能的。本染料依赖线粒体膜电位在线粒体处积累,因此如果药物刺激造成线粒体膜电位降低的话,染料将无法在线粒体处积累,影响检测结果。因此推荐先染色再进行药物刺激。
Q6:当我观察衰老细胞时,发现线粒体外的荧光,应该如何处理?
A6:请检查以下两个实验参数

(1)检测条件

制备染色和未染色的细胞,并在内源性荧光最小化的条件下进行观察。

(2)染料浓度

mtSOX的最佳浓度取决于细胞等多因素;可考虑在1-10μmol/l的浓度范围下摸索。

(参考案例)

TIG-1细胞(人胎肺来源的成纤维细胞,传14代)用1、10μmol/l浓度的mtSOX染色并观察。观察到1μmol/l的细胞具有较少的内源性荧光。

<实验数据>

本实验数据,由东京都老年病学研究所Fujita Yasunori教授友情提供。

 

 

产品文献

1、D. Sun, S. Cui, H. Ma, P. Zhu, N. Li, X. Zhang, L. Zhang, L. Xuan, J. Li , “Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury”, 2022, J. Ethnopharmacol., doi:10.1016/j.jep.2022.115331.

2、Y. Fujita, M. Iketani, M. Ito, I. Ohsawa, “Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts”, 2022, Exp. Gerontol.,  doi:10.1016/j.exger.2022.111866.

3、R. Inoe, T. Tsuno, Y. Togashi, T. Okuyama, A. Sato, K. Nishiyama, M. Kyohara, J. Li, S. Fukushima, T. Kin, D. Miyashita, Y. Shiba, Y. Atobe, H. Kiyonari, K. Bando, A. S. Shapiro, K. Funakoshi, R. N. Kulkarni, Y. Terauchi, and J. Shirakawa, “Uncoupling protein 2 and aldolase B impact insulin release by modulating mitochondrial function and Ca2+ release from the ER”, 2022, iScience,  doi:10.1016/j.isci.2022.104603.

4、A. Patel, M. Simkulet, S. Maity, M. Venkatesan, A. Matzavinos, M. Madesh & B. R. Alevriadou, “The mitochondrial Ca2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca2+ oscillations”, 2022, Sci. Rep., doi:10.1038/s41598-022-25583-7.

5、Hao Gu, Yuhui Zhu, Jiawei Yang, Ruixue Jiang, Yuwei Deng, Anshuo Li, Yingjing Fang, Qianju Wu, Honghuan Tu, Haishuang Chang, Jin Wen, Xinquan Jiang,”Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.Advanced Science”,2023Advanced Science, doi:10.1002/advs.202302136

6、Jiawei Zhou , Lingchao Meng , Ziqi He , Qianlin Song , Junwei Liu , Xiaozhe Su , Chuan Wang , Hu Ke , Caitao Dong , Wenbiao Liao , Sixing Yang ,”Melatonin exerts a protective effect in ameliorating nephrolithiasis via targeting AMPK/PINK1-Parkin mediated mitophagy and inhibiting ferroptosis in vivo and in vitro”,2023, International Immunopharmacology,doi: 10.1016/j.intimp.2023.110801

关联产品

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色
MitoBright LT Red试剂
线粒体长效荧光探针-红色

线粒体自噬—Mitophagy Detection Kit货号:MD01

线粒体自噬—Mitophagy Detection Kit货号:MD01
线粒体自噬检测试剂盒
Mitophagy Detection Kit
商品信息

特点:

 

● 只需添加小分子量荧光试剂即可轻松检测线粒体

● 可以使用荧光显微镜进行活细胞成像

● 可以与附着的溶酶体染色剂同时染色

下载说明书
产品文献
SDS下载
选择规格:
1set
现货
 
线粒体自噬检测
活动进行中
试剂盒内含
产品概述
原理
实验例
荧光特性
参考文献
常见问题Q&A

活动进行中

订购满5000元,200元礼品等你拿

线粒体自噬大揭秘丨从实验思路到检测指标  PDF下

 

关联指标干货参考(点击查看) 检测指标(点击查看)
线粒体自噬详述 Mitophagy Detection Kit(本产品)
多细胞器共染&线粒体动力学 MitoBright IM Red for Immunostaining
MitoBright LT Green/Red/Deep Red
线粒体功能 JC-1 、MT-1
CCK-L、ADP/ATP比率检测
Oxygen Consumption Rate(OCR)
mtSOX
ROS Assay Kit -Highly Sensitive DCFH-DA-
ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-
Ca2+从内质网到线粒体 Fura 2-AM
Fluo 4-AM
Rhod 2-AM
线粒体自噬-溶酶体功能 Lysosomal Acidic pH Detection Kit
Lysosomal Acidic pH Detection Kit-Green/Deep Red
线粒体自噬-脂质定位&定量 Lipi-Blue/Green/Red/Deep Red
Lipid Droplet Assay Kit-Blue/Deep Red
细胞死亡 Cell Counting Kit-8
Cytotoxicity LDH Assay Kit-WST
Annexin V, FITC Apoptosis Detection Kit

*点击即可跳转至详情页 

试剂盒内含

1622449707398455.png

产品概述

线粒体 (Mitochondria) 是细胞中重要的细胞器之一,可以为细胞活力提供能量 。近年有报道去极化线粒体的积累引起的阿尔茨海默病 (Alzheimer’s Disease) 与帕金森病(Parkinson’s Disease),可能与线粒体自噬有关。线粒体自噬是一种清除机制,可以通过自噬,将氧化应激、DNA损伤因素导致功能失调的线粒体隔离包裹成自噬体(Autophagosome),再与溶酶体 (Lysosome) 融合后降解。本试剂盒内含Mtphagy Dye (用于检测线粒体自噬) 和Lyso Dye (溶酶体染料)。Mtphagy Dye通过化学结合,固定在细胞内的线粒体上,会发出较弱的荧光。当线粒体发生自噬,损伤的线粒体会与溶酶体融合,pH会下降,变成酸性,此时Mtphagy Dye会产生较强的荧光。如想直观观察Mtphagy Dye标记的线粒体和溶酶体的结合,可联合应用试剂盒中的Lyso Dye (标记溶酶体) 进行双染。

特点:

1)只需添加小分子量荧光试剂即可轻松检测线粒体

2)可以使用荧光显微镜进行活细胞成像

3)可以与附着的溶酶体染色剂同时染色

原理

记载了本产品的检测原理和实验例的论文请看MD01论文实验例中第四篇:Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule

1606369445891830.png

实验例

1.用羰基氰化物间氯苯腙 (CCCP,一种线粒体解偶联剂) 诱导Parkin表达的HeLa细胞线粒体自噬,并通过荧光显微镜进行检测。另外,通过与线粒体染色试剂(MitoBright Deep Red:MT08)一同染色,能够区分出已发生自噬的的线粒体(白色)和未发生自噬的线粒体(紫色)(照片:右侧)。

1606369473373528.png

波长:

Mtphagy Dye:561 nm (Ex)、650 LP nm (Em)

Lyso Dye:488 nm (Ex)、502-554 nm (Em)

MitoBright Deep Red:640 nm (Ex)、656-700 nm (Em)

2.荧光显微镜观察

HeLa细胞用CCCP处理,并与线粒体检测试剂(Mtphagy Dye)和线粒体染色试剂(MitoBright LT Green)共同染色,并经过一段时间(6小时)后进行检测。

 

<检测条件>

设备:LSM-700 Laser scanning confocal microscope (LSCM)

(Carl Zeiss, Oberkochen, Germany)

激发波长:

MitoBright LT Green 488 nm

Mtphagy Dye      555 nm

物镜:63x

拍摄时间:6小时

拍摄间隔:15秒

3.自噬诱导和线粒体膜电位变化关系的检测

用羰基氰化物间氯苯腙(CCCP,一种线粒体解偶联剂)诱导Parkin表达的HeLa细胞线粒体自噬,并使用线粒体自噬检测试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit:MT09)观察荧光结果。

结果证实在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 另一方面,在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光降低)和线粒体自噬的发生(Mtphagy染料的荧光增强)。

<实验条件>

■将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

过夜培养后进行检测。

■线粒体自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。在荧光显微镜下观察细胞。

■线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作液使其终浓度达到2 μmol/l,并在37℃下孵育30分钟。孵育后,将细胞用HBSS洗涤,加入成像缓冲液,并在荧光显微镜下观察细胞。

1606285859232026.png

<检测条件>

■线粒体自噬检测

Ex:561 nm,Em:570-700 nm

■线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

荧光特性

1606285997828942.png

参考文献

序号 检测对象 使用仪器 文献
1) 细胞(HeLa) 流式细胞仪 J. Koniga,   C. Otta, M. Hugoa, T. Junga, A. L. Bulteaub, T. Grunea and A. Hohna, “Mitochondrial contribution to lipofuscin   formation”, Redox Biology, 2017, 11, 673.
2) 细胞(KB) 荧光显微镜 K. Kameyama, “Induction of mitophagy-mediated antitumor activity with   folate-appended methyl-β-cyclodextrin”, International Journal of   Nanomedicine, 2017, 12, 3433.
3) 细胞(SH-SY5Y, 初代皮质神经细胞) 荧光显微镜 E. F. Fang, T. B. Waltz, H.   Kassahun, Q. Lu, J. S. Kerr, M. Morevati, E. M. Fivenson, B. N. Wollman, K.   Marosi, M. A. Wilson, W. B. Iser, D. M. Eckley, Y. Zhang, E. Lehrmann, I. G.   Goldberg, M. S. Knudsen, M. P. Mattson, H. Nilsen, V. A. Bohr and K. G. Becker, “Tomatidine enhances lifespan and healthspan in C. elegans   through mitophagy induction via the SKN-1/Nrf2 pathway”, Scientific   Reports, 2017, 7, (46208), DOI: 10.1038/srep46208.
4) 细胞(HeLa、Parkin表达HeLa) 荧光显微镜 H. Iwashita, S. Torii, N.   Nagahora, M. Ishiyama, K. Shioji, K. Sasamoto, S. Shimizu and K. Okuma, “Live Cell Imaging of Mitochondrial Autophagy with a Novel   Fluorescent Small Molecule”, ACS Chem. Biol., 2017, 12,   (10), 2546.
5) 细胞(Cardiomyocytes) 流式细胞仪 Y. Feng, NB.   Madungwe, CV. da Cruz Junho and JC. Bopassa, “Activation of G protein-coupled oestrogen receptor 1 at   the onset of reperfusion protects the myocardium against ischemia/reperfusion   injury by reducing mitochondrial dysfunction and mitophagy.”, Br.   J. Pharmacol., 2017, 174, (23), 4329.
6) 细胞(HCT116) 荧光显微镜 K. M.   Elamin, K. Motoyama, T. Higashi, Y. Yamashita, A. Tokuda and H. Arima, “Dual targeting system by supramolecular complex of   folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic   acid for the treatment of colorectal cancer.”, Int. J. Biol.   Macromol., 2018, doi: 10.1016/j.ijbiomac.2018.02.149.
7) 细胞(Parkin-HeLa) 流式细胞仪 N. Furuya, S. Kakuta, K. Sumiyoshi, M. Ando, R. Nonaka, A. Suzuki, S. Kazuno, S. Saiki   and N. Hattori, “NDP52 interacts with   mitochondrial RNA poly(A) polymerase to promote mitophagy.”, EMBO   Rep. ., 2018, doi: 10.15252/embr.201846363.
8) 细胞(NKT) 流式细胞仪 L. Zhu, X. Xie, L.   Zhang, H. Wang, Z. Jie, X. Zhou, J. Shi, S. Zhao, B. Zhang, X. Cheng and   S. Sun, “TBK-binding protein 1 regulates   IL-15-induced autophagy and NKT cell survival”, Nature   Communications., 2018, 9, (1), doi:10.1038/s41467-018-05097-5.
9) 细胞(HeLa) 流式细胞仪 K. Araki,   K. Kawauchi, W. Sugimoto, D. Tsuda, H. Oda, R. Yoshida and K. Ohtani, “Mitochondrial protein E2F3d, a distinctive E2F3 product,   mediates hypoxia-induced mitophagy in cancer cells”, Commun   Biol., 2019, DOI: 10.1038/s42003-018-0246-9.
10) 细胞(Bovine Sertoli) 荧光显微镜 E. Adegoke, S.   Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H.   Zhang, P. Zheng and G. Zhang , “Pharmacological   inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine   arginine toxicity in bovine Sertoli cells.”, J Appl   Toxicol., 2019,doi: 10.1002/jat.3771.
11) 组织(小鼠) 荧光显微镜  E. F. Fang, Y.   Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr, B.   Yang, S. Lautrup, M. M. Hasan-Olive, D. Caponio, X.   Dan, P. Rocktaschel, D. L. Croteau, M. Akbari, N. H.   Greig, T. Fladby, H. Nilsen, M. Z. Cader, M. P.   Mattson, N. Tavernarakis and V. A. Bohr, “Mitophagy   inhibits amyloid-β and tau pathology and reverses cognitive deficits in   models of Alzheimer’s   disease.”, Nat. Neurosci. ., 2019,DOI:10.1038/s41593-018-0332-9.
12) 细胞(HepG2) 荧光显微镜 Iwasawa, T.   Shinomiya, N. Ota, N. Shibata, K. Nakata, I. Shiina,   and Y. Nagahara , “Novel Ridaifen-B   Structure Analog Induces Apoptosis and Autophagy Depending on Pyrrolidine   Side Chain”, Biological and Pharmaceutical   Bulletin., 2019, 42, (3), 401-410, doi: 10.1248/bpb.b18-00643.
13) 细胞(U2OS) 荧光显微镜 T. Namba, “BAP31 regulates mitochondrial function via interaction   with Tom40 within ER-mitochondria contact sites “, Sci   Adv., 2019, 5, (6), 1386.
14) 细胞(INS-1) 荧光显微镜 A.   Inamura, S. M. Hirayama, and K. Sakurai, Loss of   Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell   Death’, Biol. Pharm. Bull.., 2019, 42, 1977.
15) 细胞(HRCEpiC, HRPTEpic) 流式细胞仪 Y. Zhao and   M. Sun, Metformin rescues Parkin protein expression   and mitophagy in high glucose-challenged human renal epithelial cells by   inhibiting NF-κB via PP2A activation., Life   Sci.., 2020, DOI:10.1016/j.lfs.2020.117382.
16) 细胞(RAES) 荧光显微镜 N. Liu, J. Wu, L. Zhang, Z. Gao,   Y. Sun, M. Yu, Y. Zhao, S. Dong, F. Lu and W. Zhang , “Hydrogen Sulphide modulating mitochondrial morphology to   promote mitophagy in endothelial cells under high‐glucose and high‐palmitate   “, J. Cell. Mol. Med., 2017, 21, (12), 3190.
17) 细胞(BAECs) 荧光显微镜 N. Kajihara, D. Kukidome, K.   Sada, H. Motoshima, N. Furukawa, T. Matsumura, T. Nishikawa and E.   Araki, “Low glucose induces mitochondrial   reactive oxygen species via fatty acid oxidation in bovine aortic endothelial   cells”, J Diabetes Investig, 2017, 8, (6), 750.
18) 细胞(HT22) 荧光显微镜 M. Jin, H. Ni and  L.   Li, “Leptin Maintained Zinc Homeostasis Against   Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated   Mitochondrial Activation in HT22 Hippocampal Neuronal   Cells.”, Front Neurol, 2018, 9, (9), 332.
19) 细胞(BMDMs) 流式细胞仪 D. Bhatia, K. P. Chung, K.   Nakahira, E. Patino, M. C. Rice, L. K. Torres, T. Muthukumar, A. M. Choi, O.   M. Akchurin and M. E. Choi , “Mitophagy-dependent   macrophage reprogramming protects against kidney fibrosis”, JCI   Insight, 2019, 4, (23), e132826.
20) 细胞(U2OS) 荧光显微镜 J. Zheng, D. L. Croteau, V. A.    Bohr and M. Akbari, “Diminished OPA1   expression and impaired mitochondrial morphology and homeostasis in   Aprataxin-deficient cells. “, Nucleic Acids   Res., 2019, 47, (8), 4086.
21) 细胞(HT22) 荧光显微镜 D. D. Wang, M. F. Jin, D. J. Zhao   and H. Ni, “Reduction of Mitophagy-Related   Oxidative Stress and Preservation of Mitochondria Function Using Melatonin   Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced   Excitotoxicity”, Front Endocrinol (Lausanne), 2019, 10,   550.
22) 细胞(CD4+T-cells, HeLa) 荧光显微镜 A. Bektas, S. H. Schurman, M. G.   Freire, A. Bektas, S. H. Schurman, M. G. Freire, C. A. Dunn, A. K. Singh, F.   Macian, A. M. Cuervo, R. Sen and L. Ferrucci, “Age-associated   changes in human CD4+ T cells point to mitochondrial dysfunction consequent   to impaired autophagy.”, Aging (Albany NY)., 2019, 11,   (21), 9234-9263.
23) 细胞(ALM) 流式细胞仪 T. Nechiporuk, S.E. Kurtz, O.   Nikolova, T. Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K.   Joshi, M. Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang,   S. K McWeeney and J. W. Tyner, “The TP53   Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in   AML Cells.”, Cancer Discov., 2019, 9, (7), 919.
24) 细胞(PK-15) 荧光显微镜 Y. Zhang, R. Sun, X. Li  and   W. Fang, “Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation”, Viruses., 2020, 12, (3), 289.
25) 细胞(HCE) 荧光显微镜 Y. Huo, W. Chen, X. Zheng, J.   Zhao, Q. Zhang, Y. Hou, Y. Cai, X. Lu and X. Jin , “The protective effect of EGF-activated ROS in human   corneal epithelial cells by inducing mitochondrial autophagy via activation   TRPM2.”, J. Cell. Physiol., 2020, DOI: 10.1002/jcp.29597.
26) 细胞(心肌细胞) 荧光显微镜 Y. Sun, F. Lu, X. Yu, B. Wang, J.   Chen, F. Lu, S. Peng, X. Sun, M. Yu, H. Chen, Y. Wang, L. Zhang, N. Liu, H.   Du, D. Zhao and W. Zhang, “Exogenous H2S   Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db   Mice.”, Aging Dis., 2020, 11, (2), 269.
27) 细胞(HCFs) 荧光显微镜 R. Tanaka, M. Umemura, M.   Narikawa, M. Hikichi, K. Osaw, T. Fujita, U. Yokoyama, T. Ishigami, K. Tamura   and Y. Ishikawa, “Reactive fibrosis precedes   doxorubicin-induced heart failure through sterile   inflammation.”, ESC Heart Fail., 2020, 7, (2), 588.
28) 细胞(VSMCs) 荧光显微镜 C. Duan, L. Kuang, X. Xiang, J.   Zhang, Y. Zhu, Y. Wu, Q. Yan, L. Liu and T. Li, “Drp1   regulates mitochondrial dysfunction and dysregulated metabolism in ischemic   injury via Clec16a-, BAX-, and GSH- pathways “, Cell Death   Dis., 2020, 11, 251.
29) 细胞(Bovine Sertoli) 荧光显微镜 E. O. Adegoke, W. Xue, N. S.   Machebe, S. O. Adeniran, W. Hao, W. Chen, Z. Han, Z. Guixue and Z.   Peng, “Sodium Selenite inhibits mitophagy,   downregulation and mislocalization of blood-testis barrier proteins of bovine   Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB   and mitochondrial signaling pathways blockage.”, Ecotoxicol.   Environ. Saf., 2018, 116, 165.
30) 细胞(HeLa) 荧光显微镜 D. Takahashi, J. Moriyama, T.   Nakamura, E. Miki, E. Takahashi, A. Sato, T. Akaike, K. I. Nakama and H.   Arimoto, “AUTACs: Cargo-Specific Degraders   Using Selective Autophagy. “, Mol. Cell, 2019, 76,   (5), 797.
31) 细胞(primary hepatocyte) 荧光显微镜 H. Kim, J. H. Lee and J. W.   Park, “IDH2 deficiency exacerbates   acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced   apoptosis.”, Biochim Biophys Acta Mol Basis   Dis, 2019, 1865, (9), 2333.
32) 细胞(C3H10T1/2s) 荧光显微镜 M. S.    Rahman and Y. S.  Kim, “PINK1-PRKN   mitophagy suppression by Mangiferin promotes a brown-fat-phenotype via   PKA-p38 MAPK signalling in murine   C3H10T1/2”, Metabolism, 2020, 101, 154228.
33) 细胞(NHEKs) 荧光显微镜 S. Ikeoka   and A. Kiso  , “The Involvement of   Mitophagy in the Prevention of UV-B-Induced Damage in Human Epidermal   Keratinocytes “, J. Soc. Cosmet. Chem.   Jpn., 2020,  54(3), 252.

常见问题Q&A

 

Q1: 本试剂盒和现存传统方法相比有何优势?

A1: 与PH敏感并基于Keima荧光蛋白检测方法相比,本试剂为小分子荧光试剂,因此无需表达荧光蛋白。

另外,可以通过与用于普通活细胞成像的荧光试剂用相同的操作方法对其进行染色和共同观察。

Q2: 使用DMSO配置后的储存液稳定性如何?
A2:Mtphagy Dye、Lyso Dye均在制备后需保存在-20℃情况下可以稳定保存1个月。建议按照实验用量,

提前分装保存。

Q3: 工作液稳定性如何
A3: 无法保存,建议现配现用。
Q4: 培养基中有酚红会影响检测吗?
A4:观察的时候,如果使用共聚焦激光显微镜的话,几乎不会受到酚红的影响,但是使用落射型荧光显微

镜的话,会观察到酚红色的背景。(参照以下观察数据)因此使用落射型荧光显微镜时,请在Working

solution进行染色时使用不含酚红的培养基或HBSS。

1622449759948400.png

Q5: 荧光显微镜推荐的滤镜是什么?
A5:根据各种试剂推荐以下波长。Mtphagy Dye:激发(500~560 nm)、发射(670~730 nm)

Lyso Dye:激发(350~450 nm)、发射(500~560 nm)

Q6:与其他深红色染料共同染色时的注意事项。
A6:Mtphagy Dye比一般的红色系荧光染料相比波长更长,所以和Deep Red的荧光染料一起染色的时候

需要特别注意。即Mtphagy Dye在500–560 nm处激发,可在670-730 nm处检测到荧光,这时与

MitoBright  Deep Red的荧光检测波长重叠。因此,有必要在不激发深红色染料的波长下激发Mtphagy

染料,同时在不激发Mtphagy染料的波长下激发深红色染料。

[泄漏的情况]

① 制备仅添加了MitoBright Deep Red(没有添加Mtphagy Dye)的细胞。

② 通过观察MitoBright Deep Red的激发/发射波长,确认是否观察到荧光(右下图)。

③ 用Mtphagy Dye的激发/发射波长观察,确认是否观察到荧光(左下图)。

和③中,观察到来自MitoBright Deep Red的荧光(左下图)。

*如果如上所述确认荧光泄漏,请参阅以下内容。

○调整激发/发射波长

如以上确认如图所示,MitoBright Deep Red也在Ex 561 nm处激发,因此可以将Mtphagy Dye的激发

波长更改为接近激光器或滤光片的500 nm,以使MitoBright深红色不被激发。

调整荧光强度和荧光检测灵敏度

如果MitoBright Deep Red的荧光泄漏到Mtphagy染料的观察波长中,请将观察过程中的激发强度或

灵敏度降低到未观察到荧光的水平。

然后,再确认改变后的观察条件下可以检测Mtphagy Dye的荧光。

[如何检查泄漏]

使用Mtphagy Dye,Lyso dye(溶酶体染色剂),MitoBrightLT Deep Red(线粒体染色剂)

进行三重染色时进行确认

1.在3个培养皿或孔中制备细胞。

(Mtphagy Dye、Lyso Dye、MitoBright Deep Red分别在在不同的皿或孔中进行染色)

2.向每个孔中添加Mtphagy Dye和MitoBright Deep Red。 (在无血清培养基中)

3.在37°C下孵育30分钟。

4.进行自噬诱导条件下(如饥饿培养等)进行培养。

5.向上述2.中未使用的细胞添加Lyso Dye。(在无血清培养基中)

6.在37°C下孵育30分钟。

7.观察每种试剂的激发波长和荧光波长以及荧光强度。

8.检查所用试剂以外的观察波长处的荧光是否没有泄漏。

[观察条件]

Lyso Dye:Ex:350-450 nm,Em:500-560 nm

Mtphagy Dye:Ex : 500-560 nm,Em :670-730 nm

MitoBright Deep Red:Ex :640 nm,Em :656-700 nm

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色