MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 定位线粒体

● 更深层次脂质过氧化探究

下载说明书
产品文献
宣传资料下载
SDS下载
铁死亡通路图
选择规格:
5μg*3
铁死亡检测方案
活动进行中
产品概述
检测原理
实验例
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测

NO.2.    Mito-FerroGreen    线粒体内亚铁离子检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    ROS Assay Kit    活性氧检测

 

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

1622438023765086.png

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

image.png

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

image.png

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

image.png

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

image.png

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

image.png

参考文献

1) K. Shioji K, Y. Oyama, K. Okuma and H. Nakagawa, “Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria.”, Bioorg Med Chem Lett., 2010, 20, (13), 3911.

2) S. Oka, J. Leon, K. Sakumi, T. Ide, D. Kang, F. M. LaFerla and Y. Nakabeppu, “Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease”, Scientific Reports ., 2016, DOI: 10.1038/srep37889 , .

3) S. Nakamura, A. Nakanishi, M. Takazawa, S. Okihiro, S. Urano and K. Fukui, “Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: Analysis of a time-lapse live cell imaging system”, Free Radical Research., 2016, 50, (11), 1214.

4) M. Akimoto, R. Maruyama, Y. Kawabata, Y. Tajima and K. Takenaga, “Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent necroptosis”, Cell Death Dis., 2018, 9, 804.

5) M. Álvarez-Córdoba, A. Fernández Khoury, M. Villanueva-Paz, C. Gómez-Navarro, I. Villalón-García, J. M. Suárez-Rivero, S. Povea-Cabello, M. Mata, D. Cotán, M. Talaverón-Rey, A. J. Pérez-Pulido, J. J. Salas, E. M. Pérez-Villegas, A. Díaz-Quintana, J. A. Armengol, J. A. Sánchez-Alcázar , “Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation.”, Mol. Neurobiol. ., 2019, 56, (5), 3638.

6)Yaxu Li, Qiao Ran, Qiuhui Duan, Jiali Jin, Yanjin Wang, Lei Yu, Chaojie Wang, Zhenyun Zhu, Xin Chen, Linjun Weng, Zan Li, Jia Wang, Qi Wu, Hui Wang, Hongling Tian, Sihui Song, Zezhi Shan, Qiwei Zhai, Huanlong Qin, Shili Chen, Lan Fang, Huiyong Yin, Hu Zho“7-Dehydrocholesterol dictates ferroptosis sensitivity”Nature.626, 411-418(2024).

SPiDER-βGal试剂货号:SG02

SPiDER-βGal试剂货号:SG02
(2S,3R,4S,5R,6R)-2-{[3′-(Diethylamino)-5′-(fluoromethyl)-3H-spiro(isobenzofuran-1,9′-xanthen)-6′-yl]oxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
CAS号:1824699-57-1
商品信息
储存条件:0-5度保存
运输条件:室温

分子式:

C31H34FNO8

分子量:

567.6

特点:

● 活细胞和固定细胞均可染色

● 可用共聚焦显微镜或流式细胞仪检测

● 可染色组织切片

下载说明书
实验例下载
SDS下载
选择数量:

 

选择规格:
20μg*3
衰老检测方案
活动进行中
性质
原理
操作步骤
实验例
荧光特性
常见问题Q&A
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测   

NO.2.    Glucose Assay Kit-WST    葡萄糖检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    Lactate Assay Kit-WST    乳酸检测

NO.5.    Lipi-Green    脂滴检测(绿色)

性质

源自大肠杆菌的β-半乳糖苷酶基因(lacZ)被广泛用作报告基因分析标记。X-gal染色被广泛用作检测β-半乳糖苷酶的典型方法,但是由于细胞膜通透性差,必须固定细胞和组织。另外由于常规的β-半乳糖苷酶检测荧光剂仅具有较低的细胞内滞留性,所以存在不能清楚地区分不表达β-半乳糖苷酶的细胞和表达β-半乳糖苷酶的细胞的问题。
为了克服这些问题,浦野、神谷等研究者成功开发出了具有细胞膜穿透性和细胞内滞留性的新荧光试剂SPiDER-βGal 。该试剂通过与β-半乳糖苷酶的酶促反应形成中间体醌甲基化物,并与蛋白质中的SH基等亲核基团形成稳定的共价键,并发出荧光。以此方式,将反应的试剂固定在细胞内蛋白上并具有优异的细胞内滞留性,结果证明可以在单个细胞水平上清楚地检测到表达β-半乳糖苷酶的细胞。

原理

SG02-1.jpg

SPiDER-βGal的细胞染色原理

SPiDER-βGal透过细胞膜后,在β-半乳糖苷酶的酶促反应下迅速生成醌甲基化物,该产物是一种亲电子化合物,可以和带有-SH等亲核功能基团的蛋白质结合产生荧光,并可以自我固定在细胞内的蛋白质上而滞留在细胞内。

操作步骤

          加入试剂                                 培养15分钟                                 观察

SG02-2.jpg

用缓冲液清洗细胞后,              在避光条件下培养15分钟,           用荧光显微镜或流式细胞仪

加入SPiDER-βGal染色液。               用缓冲液清洗细胞。                                观察。

实验例

组织的荧光成像
image.png

果蝇组织的实时成像
(数据由东京大学大学院医学系研究科浦野泰幸教授提供)

活细胞和固定细胞的荧光成像

image.png

SPiDER-βGal对HEK/LacZ细胞和细胞数比为1:1的HEK细胞的染色图
A.活细胞,B.固定细胞(4%PFA/PBS)
(绿色:SPiDER-βGal,蓝色:Hoechst 33342)

将HEK293细胞和β-半乳糖苷酶稳定表达的HEK/LacZ细胞以1:1的比例混合培养,分别在固定前和固定后用SPiDER-βGal染色,用共聚焦显微镜观察。证实了由于SPiDER-βGal具有很好的膜通透性和能在细胞内长时间滞留,可以在固定前和固定后进行荧光成像。

用流式细胞仪检测表达β-半乳糖苷酶的细胞
1622685382400921.png

使用SPiDER-βGal通过流式细胞仪对HEK/LacZ细胞和HEK细胞分别进行检测。

将HEK293细胞和β-半乳糖苷酶稳定表达的HEK/LacZ细胞以1:1的比例混合并培养,并在用SPiDER-βGal染色后用流式细胞仪进行检测。通过在细胞中滞留的SPiDER-βGal,可以区分β-半乳糖苷酶稳定表达菌株(绿色)和非表达菌株(灰色)。

组织样品中的SA-β-gal检测

有研究人员发表了一篇论文,其中使用糖尿病模型小鼠的组织样本通过SPiDER-βGal检测到了SA-β-gal。

<组织样本的染色条件>
将快速冷冻的组织切片后,将其浸入4%多聚甲醛中,并在室温下培养20分钟。然后将20 μmol/l SPiDER-βGal加到用PBS洗涤过的样品中,并在37℃培养1小时。 最后将样品用PBS洗涤并观察。

有关实验操作和数据的详细信息,请参阅以下参考文献中的5)。

荧光特性

image.png

SPiDER-βGal与β-半乳糖苷酶反应后的激发/发射光谱

<推荐滤波片>
激发:500-540 nm
荧光:530-570 nm
使用共聚焦激光显微镜和流式细胞仪
我们有使用488 nm激发进行检测的记录。

常见问题Q&A

Q:与现有方法相比是否有相关性以及这个方法的优点。
A:①可用于活细胞。我们证实与同样用于活细胞的GFP融合蛋白表达细胞的方法存在相关性。
(2)与GFP方法相比,即使固定后也可以观察到荧光。
(3)与现有的小分子量β-半乳糖苷酶荧光检测试剂相比,具有优异的“细胞膜通透性”和“细胞内滞留性”,因此可以在单个表达β-半乳糖苷酶的细胞上染色。
Q:除了Hanks’ HEPES以外,还可以用其它工作液吗?
A:可以使用PBS,HBSS等。
Q:工作液稳定吗?
A:不能长时间保存,需要现配现用。
Q:可以用流式细胞仪检测吗?
A:可以,用流式细胞仪可以检测β-半乳糖苷酶表达和未表达的HEK细胞的混合样品并分离。 在说明上有操作步骤和实验条件。
Q:是否可以固定后再对样品染色?
A:可以,即使用4%的多聚甲醛或甲醇固定,也可以进行荧光观察。由于固定会降低β-半乳糖苷酶的活性,请摸索最佳固定条件。
Q:推荐的滤光片。
A:建议使用以下滤光片。
・荧光显微镜:激发(500-540   nm),荧光(500-540 nm)
・流式细胞仪:激发(488   nm),荧光(500-540 nm)
请参考说明书中的“激发/发射光谱”和实验例。
Q:样品染色后是否可以固定?
A:可以。即使将其固定在4%多聚甲醛或甲醇中,也可以观察到荧光。
Q:是否可以染组织?
A:可以。与细胞染色相比,组织染色需要增加工作液的浓度(例如10-20 μmol/l), 我们有组织染色的实验例。

参考文献

1) Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution,Angew. Chem. Int. Ed. Engl.,2016,doi:10.1002/anie.201603328

2) Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development,FEBS Lett.,2016,doi:10.1002/1873-3468.12271

3) A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer; Advantages of anchoring to cellular proteins after activation ,Oncotarget,2017,doi:10.18632/oncotarget.17080.

4) Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4),PLoS ONE.,2017,10.1371/journal.pone.0183166.

5) Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality,NPJ. Aging Mech. Dis.,2017, DOI:10.1038/s41514-017-0012-0.

6) Ecrg4 deficiency results in extended replicative capacity of neural stem cells in a Foxg1-dependent manner,Development,2019,doi:10.1242/dev.168120 .

7) Activity and intracellular localization of senescence-associated β-galactosidase in aging Xenopus oocytes and eggs,Exp. Gerontol.,2019,119,157.

8) β-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4,Molecular Cell,2019,71,1064-1078.

9) Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype,Nature Commun.,2020,11,481.

关联产品

细胞衰老检测试剂盒—Cellular Senescence Detection Kit – SPiDER-βGal
细胞衰老检测试剂盒SPiDERβGal
Cellular Senescence Plate Assay Kit – SPiDER-βGal试剂盒
细胞衰老培养板检测试剂盒(SPiDER-βGal)
DNA Damage Detection Kit – γH2AX - Green
DNA损伤检测试剂盒- – γH2AX -绿色
DNA Damage Detection Kit – γH2AX - Red
DNA损伤检测试剂盒- – γH2AX -红色
Nucleolus Bright Red试剂
核仁荧光染色试剂-红色

MitoPeDPP试剂货号:M466

MitoPeDPP试剂货号:M466
3-[4-(Perylenylphenylphosphino)phenoxy]propyltriphenylphosphonium iodide
MitoPeDPP
商品信息
储存条件:0-5度保存,避光
运输条件:室温

特点:

● 定位线粒体

● 更深层次脂质过氧化探究

下载说明书
产品文献
宣传资料下载
SDS下载
铁死亡通路图
选择规格:
5μg*3
现货
铁死亡检测方案
活动进行中
产品概述
检测原理
实验例
参考文献

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    FerroOrange    细胞亚铁离子检测

NO.2.    Mito-FerroGreen    线粒体内亚铁离子检测

NO.3.    Liperfluo    细胞脂质过氧化物检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    ROS Assay Kit    活性氧检测 

产品概述

MitoPeDPP是一种新型荧光染料,由于其具有三苯基膦结构,因此可以穿过细胞膜并在线粒体中聚集。

聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。由于氧化的MitoPeDPP

(Ox-MitoPeDPP) 的激发和发射波长分别是452 nm和470 nm,可以减小样品的光损伤和自发荧光,因此利用

荧光显微镜MitoPeDPP可以检测活细胞中的脂质过氧化物。

特点

1.特异性的在细胞中线粒体内聚集

2.可以检测线粒体膜内的脂质过氧化物

3.可以在488 nm和535 nm的荧光波长下进行检测

* 本产品由福冈大学化学系的Dr. Shioji开发

*由于MitoPeDPP量极少不宜看到,可以通过观察MitoPeDPP DMSO溶液的颜色是否为黄色来判断。

检测原理

MitoPeDPP可以穿过细胞膜并在线粒体中聚集。聚集在线粒体内膜上的MitoPeDPP可以被脂质过氧化物氧化而释放出强荧光。

1622438023765086.png

实验例

1.MitoPeDPP和线粒体染色试剂MitoBright共同染色的实施例

在HeLa细胞中添加t-BHP(氢过氧化叔丁基),检测脂质过氧化物

波长(wavelength/band pass)

MitoPeDPP:470/40(Ex),525/50(Em)

MitoBright DeepRed:600/50(Ex),685/50(Em)

结果证实在HeLa细胞内的线粒体中,MitoPeDPP受t-BHP氧化后会发出荧光。另外通过与线粒体染色试剂(MitoBright Deep Red:MT08)的共染色,确认了MitoPeDPP的荧光是定位在线粒体中。

image.png

2.检测添加Rotenone产生的脂质过氧化物

向HeLa细胞[μ-slide,8孔(由Ibidi制造)]中添加MitoPeDPP之后,添加Rotenone溶液并使用荧光显微镜观察。实验结果证实,添加Rotenone后,检测到细胞中产生了脂质过氧化物。

Rotenone的刺激时间:0 min(左),90 min(中),180 min(右)

image.png

上部)荧光图,下部)明场图

3.神经细胞使用MitoPeDPP的实验例

A.荧光显微镜检测

向NIE-115细胞(小鼠神经芽细胞瘤)添加异黄素,诱导Ca2+流入细胞内,并通过MitoPeDPP的荧光染色来观察线粒体膜内的脂溶性过氧化物的产生。实验结果证实添加了异霉素的实验组相比对照组来说荧光更强。

image.png

B. 平均荧光强度数据比较

为了量化对照组细胞和添加了离子霉素的细胞的荧光强度,对两组数据进行基于平均荧光强度的比较。

结果证实,加入离子霉素后30分钟的细胞对比对照组的细胞,观察到的荧光强度显着增加。

数据提供(Free Radical Research, in press)

image.png

参照芝浦工业大学系统理工学院 福井浩二副教授、中村沙希[参考文献3]

4.MitoPeDPP反应的选择性

在不含细胞的反应体系中,MitoPeDPP可以与各种过氧化物如H2O2,t-BHP和ONOO- 反应,但是在细胞中,积

累在线粒体中的MitoPeDPP可以被t-BHP氧化而释放出较强荧光 (图3A),却和其它ROS或RNS反应很弱 (图3B)。

A) 在HepG2细胞中加入MitoPeDPP培养15 min,然后用100 μmol / l的t-BHP处理。

B) 在HepG2细胞中加入MitoPeDPP培养15 min后,加入ROS、RNS诱导剂。

分别加入100 μmol / l (H2O2,NO和ONOO-诱导剂)和10  μmol / l  PMA(O2-.诱导剂) 。

左边为明场图,右边为荧光图

* t-BHP:tert-Butylhydroperoxide; PMA, Phorbol myristate acetate;

SIN-1, 3-(Morpholinyl)sydnonimine, hydrochloride;

NOC 7, 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene

波长/带通滤波器:470/40 (Ex), 525 /50 (Em)

image.png

参考文献

1) K. Shioji K, Y. Oyama, K. Okuma and H. Nakagawa, “Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria.”, Bioorg Med Chem Lett., 2010, 20, (13), 3911.

2) S. Oka, J. Leon, K. Sakumi, T. Ide, D. Kang, F. M. LaFerla and Y. Nakabeppu, “Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease”, Scientific Reports ., 2016, DOI: 10.1038/srep37889 , .

3) S. Nakamura, A. Nakanishi, M. Takazawa, S. Okihiro, S. Urano and K. Fukui, “Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: Analysis of a time-lapse live cell imaging system”, Free Radical Research., 2016, 50, (11), 1214.

4) M. Akimoto, R. Maruyama, Y. Kawabata, Y. Tajima and K. Takenaga, “Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent necroptosis”, Cell Death Dis., 2018, 9, 804.

5) M. Álvarez-Córdoba, A. Fernández Khoury, M. Villanueva-Paz, C. Gómez-Navarro, I. Villalón-García, J. M. Suárez-Rivero, S. Povea-Cabello, M. Mata, D. Cotán, M. Talaverón-Rey, A. J. Pérez-Pulido, J. J. Salas, E. M. Pérez-Villegas, A. Díaz-Quintana, J. A. Armengol, J. A. Sánchez-Alcázar , “Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation.”, Mol. Neurobiol. ., 2019, 56, (5), 3638.

关联产品

二价铁离子检测探针—FerroOrange
细胞亚铁离子检测荧光探针
Liperfluo-细胞脂质过氧化物检测
细胞脂质过氧化物检测试剂盒
Iron Assay Kit -Colorimetric-试剂盒
Iron Assay Kit -Colorimetric-组织铁离子定量试剂盒
铁离子荧光探针—Mito-FerroGreen
铁死亡荧光试剂 (Fe2+荧光法)
MDA检测试剂盒

Rhod 2-AM试剂货号:R002 CAS号: 129787-64-0

Rhod 2-AM试剂货号:R002
1-[2-Amino-5-(3-dimethylamino-6-dimethylammonio-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester, chloride
CAS号: 129787-64-0
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C52H59ClN4O19

分子量:

1079.49

特点:

 

● 激发光557nm,发射光581nm

● 红色荧光与罗丹明相似

● 定位准确,信号强度高

宣传资料
SDS下载
选择规格:
1 mg
现货 
 
钙离子检测方案
产品性状
产品概述
原理
激发发射波长
溶解比例
注意事项
参考文献
Q&A

产品性状

规格

性状 :                      本产品为暗紫色固体,使用时将固体溶解于无水DMSO中

纯度(HPLC):          98%以上

 

荧光光谱图  :           符合实验要求

NMR光谱图 :           符合实验要求

处理条件

保存方法 :                避光冷冻

产品概述

在所有的钙离子指示剂中,Rhod 2荧光信号的波长最长。它具有和罗丹明类似的激发和发射波长,分别为557 nm和581 nm。这样的激发波长使得我们很容易就能找到氩和氪光源的激光。尽管有人认为Rhod 2的荧光信号仅仅将钙复合物的荧光增加了数倍,但是Dojindo的Rhod 2由于具有很高的纯度,能有效地将钙荧光信号增加80-100倍左右,使得它的信号强度在所有的钙离子探针里面是最强的。所以,我们强烈建议使用Rhod 2作为探针用激光显微镜来检测细胞内的钙离子情况。有报道称,特别是在神经组织切片培养方面Rhod 2具有定位点的轮廓线更加清晰的特点。Rhod 2和钙离子的解离常数为(Kd=1.0 mM),在所有的钙离子荧光探针中是最高的,为监测钙离子浓度提供了一个广阔的范围。Rhod 2-AM是一种Rhod 2的乙酰甲酯衍生物,能非常容易的通过AM法负载到细胞内。

原理

与其他探针一样,Rhod 2-AM是将四个羧基全部作为脂溶性乙基甲酯体的细胞膜透明性物质。可以很容易地被细胞吸收。通过细胞内的脂肪酶水解成为Rhod 2,可以检测细胞内Ca2+

激发发射波长

E x :557 nm

Em: 581 nm

溶解比例

溶解比例:1mg/ml(DMSO),50mg/ml(三氯甲烷)

注意事项

1、试剂容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂极其微量,

开封前,请轻弹管壁几次,以保证粉末落入管底。

2、第一次使用时, 建议母液即配即用。试剂溶解后尽可能在短时间内使用,以保证实验效果。

3、溶解液 DMSO 需要保证新鲜无水,否则将会导致 AM 体水解,荧光染料无法进入细胞影响实验效果。

4、母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成 5 μl/管,用封口膜封口,

并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

5、建议您在正式实验前先摸索一下细胞量、钙离子荧光探针的终浓度、培养时间等,找到最佳实验条件

参考文献

1) R. Y. Tsien, “New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons: Design, Synthesis, and Properties of Prototype Structures”, Biochemistry, 1980, 19 (11), 2396.

2) R. Y. Tsien, T. Pozzan and T. J. Rink, “Calcium Homeostasis in Intact Lymphocytes: Cytoplasmic Free Calcium Monitored with a New, Intracellularly Trapped Fluorescent Indicator”, J. Cell Biol., 1982, 94, 325.

3) M. B. Feinstein, J. J. Egan, R. I. Sha’afi and J. White, “The Cytoplasmic Concentration of Free Calcium Inplatelets Is Controlled by Stimulators of Cyclic AMP Production (PGD2, PGE1, FORSKOLIN)”, Biochem. Biophys. Res. Commun., 1983, 113, 598.

4) N. Miyoshi, K. Hara, S. Kimura, K. Nakanishi and M. Fukuda, “A New Method of Determining Intracellular Free Ca2+ Concentration Using Quin 2-fluorescence”, Photochem. Photobiol., 1991, 53 (3), 415.

5)Hao Gu, Yuhui Zhu, Jiawei Yang, Ruixue Jiang, Yuwei Deng, Anshuo Li, Yingjing Fang, Qianju Wu, Honghuan Tu, Haishuang Chang, Jin Wen, Xinquan Jiang,”Liver-Inspired Polyetherketoneketone Scaffolds Simulate Regenerative Signals and Mobilize Anti-Inflammatory Reserves to Reprogram Macrophage Metabolism for Boosted Osteoporotic Osseointegration.Advanced Science”,2023, Advanced Science, doi:10.1002/advs.202302136

Q&A

 

 

 

Q1: 细胞内检测钙离子的试剂种类都有什么,选择什么样的比较好呢?

 

 

A1: 根据检测仪器和检测波长有很多的选择,产品后面标有AM的试剂是可以通过细胞膜的

有很多种相似的试剂,其特点如下:

【Fura 2】

•双波长激发

激发(λex= Ca:340 nm, Ca free:380 nm)、发射:λem=500 nm

•解离常数:224 nmol/L

•因为是荧光强度的比值、可以有效的减小误差

=>細胞内Ca浓度计算。

•该试剂被使用的最多

•必须要更换过滤片、会耽误一些时间。

【Fluo 3】

•单波长激发

激发:λex=508 nm、发射:λem=527 nm

•解离常数:400 nmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•不适合切片中钙离子的检测

•【Fluo 4】

•单波长激发

•激发:λex=495 nm、发射:λem=518 nm

•解离常数:360 nmol/L

•与Fluo3相比对荧光强度更高。

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。 •与Fluo3相比对細胞的毒性低

•【Indo 1】

•单波长激发

•激发:λex= 330 nm、发射(λem= Ca:410 nm, Ca free:485 nm)

•解离常数:250 nmol/L

•由于不需要更换滤光片,可以很快地检测细胞内钙离子浓度变化以及像心肌细胞运动中钙离子的变化

•(需要两台检测仪器)

•【Rhod 2】

•单波长激发

•激发:λex=553 nm、发射:λem=576 nm

•解离常数:1.0 μmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•【Quin 2】

•单波长激发

•激发:λex=339 nm、发射:λem=492 nm

•解离常数:110 nmol/L

•最早开发的产品

Fluo 4-AM试剂货号:F311 CAS号:273221-67-3

Fluo 4-AM试剂货号:F311
1-[2-Amino-5-(2,7-difluoro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester
CAS号:273221-67-3
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C51H50F2N2O23

分子量:

1096.94

特点:

 

● 激发波长494 nm,发射波长516 nm

● 激光共聚焦,流式细胞仪均可检测

● 荧光强度高

下载说明书
宣传资料
SDS下载
选择规格:
1mg
现货 
 
钙离子
产品性状
产品概述
原理
激发发射波长
操作步骤
注意事项
数据处理
文献
Q&A

产品性状

规格

性状 :                      本产品为橙红色粉末,使用时将固体溶解于无水DMSO中

纯度(HPLC):          98%以上

 

荧光光谱图:             符合实验要求

NMR光谱图:            符合实验要求

处理条件

保存方法 :                避光冷冻

产品概述

Fluo 4是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。这个波长更接近于氩激光器的波长,所以用氩激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。

原理

Fluo 4-AM是一种可以穿透细胞膜的荧光染料,需用无水DMSO配制。Fluo 4-AM进入细胞后可以被细胞内的酯酶剪切形成Fluo 4,从而被滞留在细胞内。产生的Fluo 4随后会和钙离子(Ca2+)结合并发出荧光。由于Fluo 4与钙离子的亲和力和Fluo 3近似(Fluo 3:Kd=0.4 μmol/l、Fluo 4: Kd=0.36 μmol/l),所以使用上和Fluo 3也基本相同,可以使用激光共聚焦显微镜或流式细胞仪等仪器检测细胞内钙离子浓度的变化。钙离子探针种类繁多,根据不同的实验要求,选择不同的产品。

激发发射波长

E x   :494 nm

E m :516 nm

操作步骤

1、用 HBSS 溶液稀释 1-5 mmol/l 的 Fluo 4-AM 母液,配制成 1-5 µmol/l 的 Fluo 4-AM 工作液。

(此浓度仅供参考,请根据具体实验要求自行调整)

例如:1 mmol/l 母液配制 1 ml 浓度为 5 µmol/l 工作液的方法:用 1 ml HBSS 溶液稀释 5 µl 母

液即可。Fluo 4-AM 工作液需要即配即用,请勿反复冻存。如果Fluo 4-AM进入细胞的效果不好,可

使用Pluronic® F-127,后者可以防止Fluo 4-AM在缓冲液里聚合并能促进其进入细胞。

*Pluronic® F-127 先用DMSO溶解至浓度为 20%(W/V),然后根据实验需要直接加入Fluo 4-AM工作

液中至终浓度为 0.04-0.05%(此浓度仅供参考,请根据具体实验要求自行调整)。

2、取出预培养的细胞,除去培养基,使用 HBSS 溶液洗涤细胞 3 次。如果使用含血清的培养基,血清中

的酯酶会分解 AM 体,从而降低 Fluo 4-AM 进入细胞的效果。另外含有酚红的培养基会使本底值略

微偏高,所以加工作液之前需尽量去除培养基残留。

3、加入 Fluo 4-AM 工作液,溶液量以覆盖细胞为准。

4、37℃细胞培养箱孵育 10-60 分钟,除去 Fluo 4-AM 工作液。关于孵育的时间,如果首次做实验不能

确定,建议先孵育 30 分钟,看荧光效果:如果细胞死亡较多,适当缩短时间;如果荧光强度太

弱,适当延长时间。

5、用 HBSS溶液洗涤细胞 3 次,以充分去除残留的 Fluo 4-AM 工作液。然后加入 HBSS 溶液覆盖细胞。

6、37℃培养箱孵育约 20-30 分钟,以确保 AM 体在细胞内的完全去酯化作用。

如果细胞内酯酶活性较低,建议严格按照此操作进行;酯酶活性高的细胞实验,可以忽略此步。

7、用激光共聚焦或荧光显微镜检测细胞,激发波长 494 nm,发射波长 516 nm。

注意事项

1、试剂容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂极其微量,

开封前,请轻弹管壁几次,以保证粉末落入管底。

2、第一次使用时, 建议母液即配即用。试剂溶解后尽可能在短时间内使用,以保证实验效果。

3、溶解液DMSO需要保证新鲜无水,否则将会导致 AM 体水解,使荧光染料无法进入细胞,影响实验效果

4、母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成 5 μl/管,用封口膜封口,

并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

5、建议您在正式实验前先摸索一下细胞量、钙离子荧光探针的终浓度、培养时间等,找到最佳实验条件

数据处理

计算公式:

[Ca2+]i = Kd×(F-Fmin) / (Fmax-F)

[Ca2+]i :细胞内Ca2+浓度

Kd:解离常数

F  :荧光强度

Fmin:Ca2+为零状态下测得的荧光比值

Fmax:Ca2+为饱和状态下测得的荧光比值

文献

1) A. Minta, J. P. Y. Kao and R. Y. Tsien, “Fluorescent Indicators for Cytosolic Calcium Based on Rhodamine and Fluorescein Chromophores”, J. Biol. Chem., 1989, 264(14), 8171.

2) J. P. Kao, A. T. Harootunian and R. Y. Tsien, “Photochemically Generated Cytosolic Calcium Pulses and Their Detection by Fluo-3”, J. Biol. Chem., 1989, 264, 8179.

3) M. Eberhard and P. Erne, “Kinetics of Calcium Binding to Fluo-3 by Stopped-Flow Fluorescence”, Biochem. Biophys. Res. Commun., 1989, 163, 309.

4) A. Hernandez-Cruz, F. Sala and P. R. Adams, “Subcellular Calcium Transients Visualized by Confocal Microscopy in a Voltage-clamped Vertebrate Neuron”, Science, 1990, 247, 858.

5) A. H. Cornell-Bell, S. M. Finkbeiner, M. S. Cooper and S. J. Smith, “Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling”, Science, 1990, 247, 470.

6) D. A. Williams, “Quantitative Intracellular Calcium Imaging with Laser-scanning Confocal Microscopy”, Cell Calcium, 1990, 11, 589.

7) D. A. Williams, S. H. Cody, C. A. Gehring, R. W. Parish and P. J. Harris, “Confocal Imaging of Ionised Calcium in Living Plant Cells”, Cell Calcium, 1990, 11, 291.

8) P. A. Vandenberghe and J. L. Ceuppens, “Flow Cytometric Measurement of Cytoplasmic Free Calcium in Human Peripheral Blood T Lymphocytes with Fluo-3, A New Fluorescent Calcium Indicator”, J. Immunol. Methods, 1990, 127, 197.

10) M. Iino, H. Kasai and T. Yamazawa, “Visualization of Neural Control of Intracellular Ca2+ Concentration in Single Vascular Smooth Muscle Cells in situ”, EMBO J., 1994, 13 (21), 5026.

11) M. E. Dailey and S. J. Smith, “Spontaneous Ca2+ Transients in Developing Hippocampal Pyramidal Cells”, J. Neurobiol., 1994, 25(3), 243.

12) M. Burnier, G. Centeno, E. Burki and H. R. Brunner, “Confocal Microscopy to Analyze Cytosolic and Nuclear Calcium in Cultured Vascular Cells”, Am. J. Physiol., 1994, 266, C1118.

13) E. Donnadieu and L. Y. W. Bourguignon, “Ca2+ Signaling in Endothelial Cells Stimulated by Bradykinin: Ca2+ Measurement in the Mitochondria and the Cytosol by Confocal Microscopy”, Cell Calcium, 1996, 20 (1), 53.

14) M. Ikeda, H. Ariyoshi, J. Kambayashi, K. Fujitani, N. Shinoki, M. Sakon, T. Kawasaki and M. Monden, “Separate Analysis of Nuclear and Cytosolic Ca2+ Concentrations in Human Umbilical Vein Endothelial Cells”, J. Cell. Biochem., 1996, 63 (1), 23.

15) J. E. Merritt, S. A. McCarthy, M. P. A. Davies and K. E. Moores, “Use of fluo-3 to Measure Cytosolic Ca2+ in Platelets and Neutrophils Loading Cells with the Dye, Calibration of Traces, Measurements in the Presence of Plasma, and Buffering of Cytosolic Ca2+”, Biochem. J., 1990, 269, 513.

Q&A

 

 

 

Q1: 细胞内检测钙离子的试剂种类都有什么,选择什么样的比较好呢?

 

 

A1: 根据检测仪器和检测波长有很多的选择,产品后面标有AM的试剂是可以通过细胞膜的

有很多种相似的试剂,其特点如下:

【Fura 2】

•双波长激发

激发(λex= Ca:340 nm, Ca free:380 nm)、发射:λem=500 nm

•解离常数:224 nmol/L

•因为是荧光强度的比值、可以有效的减小误差

=>細胞内Ca浓度计算。

•该试剂被使用的最多

•必须要更换过滤片、会耽误一些时间。

【Fluo 3】

•单波长激发

激发:λex=508 nm、发射:λem=527 nm

•解离常数:400 nmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•不适合切片中钙离子的检测

•【Fluo 4】

•单波长激发

•激发:λex=495 nm、发射:λem=518 nm

•解离常数:360 nmol/L

•与Fluo3相比对荧光强度更高。

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。 •与Fluo3相比对細胞的毒性低

•【Indo 1】

•单波长激发

•激发:λex= 330 nm、发射(λem= Ca:410 nm, Ca free:485 nm)

•解离常数:250 nmol/L

•由于不需要更换滤光片,可以很快地检测细胞内钙离子浓度变化以及像心肌细胞运动中钙离子的变化

•(需要两台检测仪器)

•【Rhod 2】

•单波长激发

•激发:λex=553 nm、发射:λem=576 nm

•解离常数:1.0 μmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•【Quin 2】

•单波长激发

•激发:λex=339 nm、发射:λem=492 nm

•解离常数:110 nmol/L

•最早开发的产品

Fluo 3-AM试剂货号:F023 CAS号:121714-22-5

Fluo 3-AM试剂货号:F023
1-[2-Amino-5-(2,7-dichloro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester
CAS号:121714-22-5
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C51H50Cl2N2O23

分子量:

1129.85

特点:

 

● 激发波长480-500 nm,发射波长523-530 nm

● 激光共聚焦,流式细胞仪均可检测

下载说明书
宣传资料
SDS下载
选择规格:
1mg
现货 
 
钙离子
产品性状
产品概述
原理
激发发射波长
操作步骤
注意事项
实验例
数据分析
Q&A

产品性状

规格

性状 :                      本产品为红色粉末,使用时将固体溶解于无水DMSO中

纯度(HPLC):          98%以上

 

荧光光谱图:             符合实验要求

NMR光谱图:            符合实验要求

处理条件

保存方法 :                避光冷冻

产品概述

Fluo 3-AM是一种检测细胞内钙离子的荧光探针。Fluo 3若以游离配体形式存在时几乎是非荧光性的,但是当它与钙离子Ca2+结合后荧光会增加60至80倍,是目前最常用的一种钙离子荧光探针。激光共聚焦荧光显微镜具有氩激光器,所以Fluo 3可被广泛使用于这种显微镜上。这种荧光信号发出来的长波也便于减小对样品细胞的光损伤。Fluo 3也可用来检测紫外光照射下可裂解的螯合钙或其它形式的钙。Fluo 3-AM是Fluo 3的一种乙酰甲酯衍生物,通过培养,能够轻易进入细胞中。

原理

Fluo 3-AM (钙离子荧光探针) 需用无水DMSO (anhydrous DMSO)配制。Fluo 3-AM是一种可以穿透细胞膜的荧光染料。Fluo 3-AM进入细胞后可以被细胞内的酯酶剪切形成Fluo 3,从而被滞留在细胞内。Fluo 3可以和钙离子结合,结合钙离子后可以产生较强的荧光,最大激发波长为506nm,最大发射波长为526nm

激发发射波长

E x :480-500 nm

E m :525-530 nm

操作步骤

1、用 HBSS 溶液稀释 1-5 mmol/l 的 Fluo 3-AM 母液,配制成 1-5 µmol/l的 Fluo 3-AM 工作液

(此浓度仅供参考,请根据具体实验要求自行调整)。

例如:1 mmol/l 母液配制 1 ml 浓度为 5 µmol/l工作液的方法:用 1 ml HBSS 溶液稀释 5 µl母液

即可。Fluo 3-AM 工作液需要即配即用,请勿反复冻存。如果Fluo 3-AM进入细胞的效果不好,

可使用Pluronic® F-127,后者可以防止Fluo 3-AM在缓冲液里聚合并能促进其进入细胞。

*Pluronic® F-127先用DMSO溶解至浓度为 20%(W/V),然后根据实验需要直接加入Fluo 3-AM工作液

中至终浓度为 0.04-0.05%(此浓度仅供参考,请根据具体实验要求自行调整)。

2、取出预培养的细胞,除去培养基,用 HBSS 溶液洗涤细胞 3 次。

如果使用含血清的培养基,血清中的酯酶会分解 AM 体,从而降低 Fluo 3-AM 进入细胞的效果。

另外含有酚红的培养基会使本底值略微偏高,所以加工作液之前需尽量去除培养基残留。

3、加入 Fluo 3-AM 工作液,溶液量以覆盖细胞为准。

4、37℃细胞培养箱孵育10-60分钟,除去Fluo 3-AM工作液。关于孵育的时间,如果首次做实验不能定,

建议先孵育 30 分钟,看荧光效果:如果细胞死亡较多,适当缩短时间;如果荧光强度太弱,

适当延长时间。

5、用 HBSS 溶液洗涤细胞 3 次以充分去除残留的 Fluo 3-AM 工作液。然后加入 HBSS 溶液覆盖细胞。

6、37℃培养箱孵育约 20-30 分钟,以确保 AM 体在细胞内的完全去酯化作用。

如果细胞内酯酶活性较低,建议严格按照此操作进行;酯酶活性高的细胞实验,可以忽略此步。

7、用激光共聚焦或荧光显微镜检测细胞,激发波长 480-500 nm,发射波长 525-530 nm。

注意事项

1、试剂容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂极其微量,

开封前,请轻弹管壁几次,以保证粉末落入管底。

2、第一次使用时, 建议母液即配即用。试剂溶解后尽可能在短时间内使用,以保证实验效果。

3、溶解液DMSO需要保证新鲜无水,否则将会导致AM体水解,使荧光染料无法进入细胞,影响实验效果。

4、母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成5 μl/管,用封口膜封口,并用

铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

5、建议您在正式实验前先摸索一下细胞量、钙离子荧光探针终浓度、培养时间等,找到最佳实验条件。

实验例

加载了Fluo 3的新鲜分离的大鼠肝脏细胞PE刺激后出现规则胞浆钙振荡。

上图为细胞明场图和不同时间点(min)的比例成像,

下图为影响Fluo 3荧光强度随时间的变化。

成像系统:Photon Technology International Inc.,

显微镜Nikon TE2000U,CCD相机QuantEM512S,软件ERP。

(北京师范大学细胞生物学研究所 崔宗杰教授 提供照片)

 

数据分析

计算公式:

[Ca2+]i = Kd×(F-Fmin) / (Fmax-F)

[Ca2+]i :细胞内Ca2+浓度

Kd:解离常数

F :荧光强度

Fmin:Ca2+为零状态下测得的荧光比值

Fmax:Ca2+为饱和状态下测得的荧光比值

Q&A

 

 

 

Q1: 细胞内检测钙离子的试剂种类都有什么,选择什么样的比较好呢?

 

 

A1: 根据检测仪器和检测波长有很多的选择,产品后面标有AM的试剂是可以通过细胞膜的

有很多种相似的试剂,其特点如下:

【Fura 2】

•双波长激发

激发(λex= Ca:340 nm, Ca free:380 nm)、发射:λem=500 nm

•解离常数:224 nmol/L

•因为是荧光强度的比值、可以有效的减小误差

=>細胞内Ca浓度计算。

•该试剂被使用的最多

•必须要更换过滤片、会耽误一些时间。

【Fluo 3】

•单波长激发

激发:λex=508 nm、发射:λem=527 nm

•解离常数:400 nmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•不适合切片中钙离子的检测

•【Fluo 4】

•单波长激发

•激发:λex=495 nm、发射:λem=518 nm

•解离常数:360 nmol/L

•与Fluo3相比对荧光强度更高。

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。 •与Fluo3相比对細胞的毒性低

•【Indo 1】

•单波长激发

•激发:λex= 330 nm、发射(λem= Ca:410 nm, Ca free:485 nm)

•解离常数:250 nmol/L

•由于不需要更换滤光片,可以很快地检测细胞内钙离子浓度变化以及像心肌细胞运动中钙离子的变化

•(需要两台检测仪器)

•【Rhod 2】

•单波长激发

•激发:λex=553 nm、发射:λem=576 nm

•解离常数:1.0 μmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•【Quin 2】

•单波长激发

•激发:λex=339 nm、发射:λem=492 nm

•解离常数:110 nmol/L

•最早开发的产品

Fluo 3-AM试剂货号:F026 CAS 121714-22-5

Fluo 3-AM试剂货号:F026
Fluo3-AM1-[2-Amino-5-(2,7-dichloro-6-acetoxymethoxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, tetra(acetoxymethyl)ester
121714-22-5
商品信息
储存条件:-20度保存,避光
运输条件:室温
分子式:

C51H50Cl2N2O23

分子量:

1129.85

 

特点:

 

● 激发波长480-500 nm,发射波长523-530 nm

● 激光共聚焦,流式细胞仪均可检测

 

下载说明书
宣传资料
SDS下载
选择规格:
50ug
50ug*8
现货 
钙离子检测方案
产品性状
产品概述
原理
激发发射波长
操作步骤
注意事项
实验案例
数据分析
文献
Q&A

产品性状

规格

性状 :                      本产品为红色粉末,使用时将固体溶解于无水DMSO中

纯度(HPLC):          98%以上

 

荧光光谱图:             符合实验要求

NMR光谱图:            符合实验要求

处理条件

保存方法 :                避光冷冻

产品概述

Fluo 3-AM是一种检测细胞内钙离子的荧光探针。Fluo 3若以游离配体形式存在时几乎是非荧光性的,但是当它与钙离子Ca2+结合后荧光会增加60至80倍,是目前最常用的一种钙离子荧光探针。激光共聚焦荧光显微镜具有氩激光器,所以Fluo 3可被广泛使用于这种显微镜上。这种荧光信号发出来的长波也便于减小对样品细胞的光损伤。Fluo 3也可用来检测紫外光照射下可裂解的螯合钙或其它形式的钙。Fluo 3-AM是Fluo 3的一种乙酰甲酯衍生物,通过培养,能够轻易进入细胞中。

原理

Fluo 3-AM (钙离子荧光探针) 需用无水DMSO (anhydrous DMSO)配制。Fluo 3-AM是一种可以穿透细胞膜的荧光染料。Fluo 3-AM进入细胞后可以被细胞内的酯酶剪切形成Fluo 3,从而被滞留在细胞内。Fluo 3可以和钙离子结合,结合钙离子后可以产生较强的荧光,最大激发波长为506nm,最大发射波长为526nm

激发发射波长

E x :480-500 nm

Em:525-530 nm

操作步骤

1、用 HBSS 溶液稀释 1-5 mmol/l 的 Fluo 3-AM 母液,配制成 1-5 µmol/l的 Fluo 3-AM 工作液

(此浓度仅供参考,请根据具体实验要求自行调整)。

例如:1 mmol/l 母液配制 1 ml 浓度为 5 µmol/l工作液的方法:用 1 ml HBSS 溶液稀释 5 µl母液

即可。Fluo 3-AM 工作液需要即配即用,请勿反复冻存。如果Fluo 3-AM进入细胞的效果不好,

可使用Pluronic® F-127,后者可以防止Fluo 3-AM在缓冲液里聚合并能促进其进入细胞。

*Pluronic® F-127先用DMSO溶解至浓度为 20%(W/V),然后根据实验需要直接加入Fluo 3-AM工作液

中至终浓度为 0.04-0.05%(此浓度仅供参考,请根据具体实验要求自行调整)。

2、取出预培养的细胞,除去培养基,用 HBSS 溶液洗涤细胞 3 次。

如果使用含血清的培养基,血清中的酯酶会分解 AM 体,从而降低 Fluo 3-AM 进入细胞的效果。

另外含有酚红的培养基会使本底值略微偏高,所以加工作液之前需尽量去除培养基残留。

3、加入 Fluo 3-AM 工作液,溶液量以覆盖细胞为准。

4、37℃细胞培养箱孵育10-60分钟,除去Fluo 3-AM工作液。关于孵育的时间,如果首次做实验不能定,

建议先孵育 30 分钟,看荧光效果:如果细胞死亡较多,适当缩短时间;如果荧光强度太弱,

适当延长时间。

5、用 HBSS 溶液洗涤细胞 3 次以充分去除残留的 Fluo 3-AM 工作液。然后加入 HBSS 溶液覆盖细胞。

6、37℃培养箱孵育约 20-30 分钟,以确保 AM 体在细胞内的完全去酯化作用。

如果细胞内酯酶活性较低,建议严格按照此操作进行;酯酶活性高的细胞实验,可以忽略此步。

7、用激光共聚焦或荧光显微镜检测细胞,激发波长 480-500 nm,发射波长 525-530 nm。

注意事项

1、试剂容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂极其微量,

开封前,请轻弹管壁几次,以保证粉末落入管底。

2、第一次使用时, 建议母液即配即用。试剂溶解后尽可能在短时间内使用,以保证实验效果。

3、溶解液DMSO需要保证新鲜无水,否则将会导致AM体水解,荧光染料无法进入细胞,影响实验效果

4、母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成5 μl/管,用封口膜封口,并用铝

箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

5、建议您在正式实验前先摸索一下细胞量、钙离子荧光探针的终浓度、培养时间等,找到最佳实验条件

实验案例

加载了Fluo 3的新鲜分离的大鼠肝脏细胞PE刺激后出现规则胞浆钙振荡。

上图为细胞明场图和不同时间点(min)的比例成像,

下图为影响Fluo 3荧光强度随时间的变化。

成像系统:Photon Technology International Inc.,

显微镜Nikon TE2000U,CCD相机QuantEM512S,软件ERP。

(北京师范大学细胞生物学研究所 崔宗杰教授 提供照片)

 

数据分析

计算公式:

[Ca2+]i = Kd×(F-Fmin) / (Fmax-F)

[Ca2+]i :细胞内Ca2+浓度

Kd:解离常数

F  :荧光强度

Fmin:Ca2+为零状态下测得的荧光比值

Fmax:Ca2+为饱和状态下测得的荧光比值

文献

1) A. Minta, J. P. Y. Kao and R. Y. Tsien, “Fluorescent Indicators for Cytosolic Calcium Based on Rhodamine and Fluorescein Chromophores”, J. Biol. Chem., 1989, 264(14), 8171.

2) J. P. Kao, A. T. Harootunian and R. Y. Tsien, “Photochemically Generated Cytosolic Calcium Pulses and Their Detection by Fluo-3”, J. Biol. Chem., 1989, 264, 8179.

3) M. Eberhard and P. Erne, “Kinetics of Calcium Binding to Fluo-3 by Stopped-Flow Fluorescence”, Biochem. Biophys. Res. Commun., 1989, 163, 309.

4) A. Hernandez-Cruz, F. Sala and P. R. Adams, “Subcellular Calcium Transients Visualized by Confocal Microscopy in a Voltage-clamped Vertebrate Neuron”, Science, 1990, 247, 858.

5) A. H. Cornell-Bell, S. M. Finkbeiner, M. S. Cooper and S. J. Smith, “Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling”, Science, 1990, 247, 470.

6) D. A. Williams, “Quantitative Intracellular Calcium Imaging with Laser-scanning Confocal Microscopy”, Cell Calcium, 1990, 11, 589.

7) D. A. Williams, S. H. Cody, C. A. Gehring, R. W. Parish and P. J. Harris, “Confocal Imaging of Ionised Calcium in Living Plant Cells”, Cell Calcium, 1990, 11, 291.

8) P. A. Vandenberghe and J. L. Ceuppens, “Flow Cytometric Measurement of Cytoplasmic Free Calcium in Human Peripheral Blood T Lymphocytes with Fluo-3, A New Fluorescent Calcium Indicator”, J. Immunol. Methods, 1990, 127, 197.

10) M. Iino, H. Kasai and T. Yamazawa, “Visualization of Neural Control of Intracellular Ca2+ Concentration in Single Vascular Smooth Muscle Cells in situ”, EMBO J., 1994, 13 (21), 5026.

11) M. E. Dailey and S. J. Smith, “Spontaneous Ca2+ Transients in Developing Hippocampal Pyramidal Cells”, J. Neurobiol., 1994, 25(3), 243.

12) M. Burnier, G. Centeno, E. Burki and H. R. Brunner, “Confocal Microscopy to Analyze Cytosolic and Nuclear Calcium in Cultured Vascular Cells”, Am. J. Physiol., 1994, 266, C1118.

13) E. Donnadieu and L. Y. W. Bourguignon, “Ca2+ Signaling in Endothelial Cells Stimulated by Bradykinin: Ca2+ Measurement in the Mitochondria and the Cytosol by Confocal Microscopy”, Cell Calcium, 1996, 20 (1), 53.

14) M. Ikeda, H. Ariyoshi, J. Kambayashi, K. Fujitani, N. Shinoki, M. Sakon, T. Kawasaki and M. Monden, “Separate Analysis of Nuclear and Cytosolic Ca2+ Concentrations in Human Umbilical Vein Endothelial Cells”, J. Cell. Biochem., 1996, 63 (1), 23.

15) J. E. Merritt, S. A. McCarthy, M. P. A. Davies and K. E. Moores, “Use of fluo-3 to Measure Cytosolic Ca2+ in Platelets and Neutrophils Loading Cells with the Dye, Calibration of Traces, Measurements in the Presence of Plasma, and Buffering of Cytosolic Ca2+”, Biochem. J., 1990, 269, 513.

Q&A

 

 

 

Q1: 细胞内检测钙离子的试剂种类都有什么,选择什么样的比较好呢?

 

 

A1: 根据检测仪器和检测波长有很多的选择,产品后面标有AM的试剂是可以通过细胞膜的

有很多种相似的试剂,其特点如下:

【Fura 2】

•双波长激发

激发(λex= Ca:340 nm, Ca free:380 nm)、发射:λem=500 nm

•解离常数:224 nmol/L

•因为是荧光强度的比值、可以有效的减小误差

=>細胞内Ca浓度计算。

•该试剂被使用的最多

•必须要更换过滤片、会耽误一些时间。

【Fluo 3】

•单波长激发

激发:λex=508 nm、发射:λem=527 nm

•解离常数:400 nmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•不适合切片中钙离子的检测

•【Fluo 4】

•单波长激发

•激发:λex=495 nm、发射:λem=518 nm

•解离常数:360 nmol/L

•与Fluo3相比对荧光强度更高。

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。 •与Fluo3相比对細胞的毒性低

•【Indo 1】

•单波长激发

•激发:λex= 330 nm、发射(λem= Ca:410 nm, Ca free:485 nm)

•解离常数:250 nmol/L

•由于不需要更换滤光片,可以很快地检测细胞内钙离子浓度变化以及像心肌细胞运动中钙离子的变化

•(需要两台检测仪器)

•【Rhod 2】

•单波长激发

•激发:λex=553 nm、发射:λem=576 nm

•解离常数:1.0 μmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•【Quin 2】

•单波长激发

•激发:λex=339 nm、发射:λem=492 nm

•解离常数:110 nmol/L

•最早开发的产品

Fura 2试剂货号:F014 CAS号:96314-98-6

Fura 2试剂货号:F014
1-[6-Amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, pentapotassium salt
CAS号:96314-98-6
商品信息
储存条件:室温
运输条件:室温
分子式:

C29H22K5N3O14

分子量:

831.99

SDS下载
选择规格:
1mg
期货 
 
钙离子

Fura2-AM试剂货号:F015 CAS号:108964-32-5

Fura2-AM试剂货号:F015
1-[6-Amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N’,N’-tetraacetic acid, pentaacetoxymethyl ester
CAS号:108964-32-5
商品信息
储存条件:-20度保存
运输条件:室温
分子式:

C44H47N3O24

分子量:

1001.85

 

特点:

 

● 双波长激发检测钙离子

● 激光共聚焦,流式细胞仪均可检测

● 荧光强度高

下载说明书
宣传资料
SDS下载
选择规格:
1mg
现货 
 
钙离子
产品性状
产品概述
原理
激发发射波长
操作步骤
注意事项
数据处理
参考文献
Q&A

产品性状

规格

性状 :                      本产品为黄色或橙黄色粉末,使用时将固体溶解于无水DMSO中

纯度(HPLC):          98%以上

荧光光谱图:             符合实验要求

NMR光谱图:            符合实验要求

处理条件

保存方法 :                避光冷冻

产品概述

Fura 2-AM是一种可以穿透细胞膜的荧光染料。Fura 2-AM的荧光比较弱,最大激发波长为369 nm,最大发射波长为478 nm,并且其荧光不会随钙离子浓度改变而改变。Fura 2-AM进入细胞后可以被细胞内的酯酶剪切形成Fura 2,从而被滞留在细胞内。Fura 2和钙离子结合后,最大激发波长为335 nm(最大激发波长随离子浓度的的不同而有所不同),最大发射波长为505nm。实际检测时推荐使用的激发波长为340nm,发射波长为510 nm。如果做双波长检测,则推荐使用的激发波长为340 nm和380 nm。

原理

Fura 2可以和钙离子(Ca2+)结合,结合钙离子后在330-350 nm激发光下可以产生较强的荧光,而在380 nm激发光下则会导致荧光减弱。这样就可以使用340 nm和380 nm这两个荧光的比值来检测细胞内的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗漏,细胞厚度差异等一些误差因素。

激发发射波长

Ex :340~380 nm

Em :510 nm

1606792161554681.jpg

操作步骤

1、用HBSS溶液稀释1-5 mmol/l的Fura 2-AM母液,配制成1-5 μmol/l的Fura 2-AM工作液。

(此浓度仅供参考,请根据具体实验要求自行调整)

例如:1 mmol/l母液配制1 ml浓度为5 μmol/l工作液的方法:用1 ml HBSS溶液稀释5 μl母液即可。

如果Fura 2-AM进入细胞效果不好,可使用Pluronic® F-127后者可以防止Fura 2-AM在缓冲液里聚合

并能促进其进入细胞。

*Pluronic® F-127先用DMSO溶解至浓度为20%(W/V),然后根据实验需要直接加入Fura 2-AM工作液中

至终浓度为0.04-0.05%(此浓度仅供参考,请根据具体实验要求自行调整)。

2、取出预培养的细胞,除去培养基,使用HBSS溶液洗涤细胞3次。

如果使用含血清的培养基,血清中的酯酶会分解AM体,从而降低Fura 2-AM进入细胞的效果。

另外含有酚红的培养 基会使本底值略微偏高,所以加工作液之前需尽量去除培养基残留。

3、加入Fura 2-AM工作液,溶液量以覆盖细胞为准。

4、37℃细胞培养箱孵育10-60分钟,除去Fura 2-AM工作液。关于孵育的时间,

如果首次做实验不能确定,建议先孵育30分钟,看荧光效果:如果细胞死亡较多,缩短时间;

荧光强度太弱,延长时间。

5、用HBSS溶液洗涤细胞3次,以充分去除残留的Fura 2-AM工作液。然后加入HBSS溶液覆盖细胞。

6、37℃培养箱孵育约20-30分钟,以确保AM体在细胞内的完全去酯化作用。如果细胞内酯酶活性较低,

建议严格按照此操作进行;酯酶活性高的细胞实验,可以忽略此步。

7、用流式细胞仪或其它设备检测细胞,激发波长380 nm(Fura 2)和340 nm(钙离子-Fura 2)

发射波长510 nm。

注意事项

1、试剂容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂极其微量,

开封前,请轻弹管壁几次,以保证粉末落入管底。

2、第一次使用时, 建议母液即配即用。试剂溶解后尽可能在短时间内使用,以保证实验效果。

3、溶解液DMSO需要保证新鲜无水,否则将会导致AM体水解,使荧光染料无法进入细胞,影响实验效果。

4、母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成5 μl/管,用封口膜封口,

并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。

5、建议您在正式实验前先摸索一下细胞量、钙离子荧光探针的终浓度、培养时间等,找到最佳实验条件

数据处理

Fλ1与Fλ2分别是λ1与λ2激发时的总荧光强度,Sf 1与Sf 2是两种紫外光激发时游离Fura-2 (未结合Ca2+)的荧光系数,

Cf是游离的Fura-2浓度,Sb1与Sb2是相应波长下结合Ca2+后Fura-2的荧光系数,Cb是结合Ca2+的Fura-2浓度

 

参考文献

1) G. Grynkiewicz, M. Poenie and R. Y. Tsien, “A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties”, J. Biol. Chem., 1985, 260, 3440.

2) D. A. Williams, K. E. Fogarty, R. Y. Tsien and F. S. Fay, “Calcium Gradients in Single Smooth Muscle Cells Revealed by the Digital Imaging Microscope Using Fura-2”, Nature, 1985, 318, 558.

3) R. Y. Tsien, T. J. Rink and M. Poenie, “Measurement of Cytosolic Free Ca2+ in Individual Small Cells Using Fluorescence Microscopy with Dual Excitation Wavelengths”, Cell Calcium, 1985, 6, 145.

4) D. A. Williams and F. S. Fay, “Intracellular Calibration of the Fluorescent Calcium Indicator Fura-2”, Cell Calcium, 1990, 11, 75.

5) W. Almers and E. Neher, “The Ca Signal from Fura-2 Loaded Mast Cells Depends Strongly on the Method of Dye-loading”, FEBS Lett., 1985, 192, 13.

6) G. H. R. Rao, J. D. Peller and J. G. White, “Measurement of Ionized Calcium in Blood Platelets with a New Generation Calcium Indicator”, Biochem. Biophys. Res. Commun., 1985, 132, 652.

7) H. Ozaki, K. Sato, T. Satoh and H. Karaki, “Simultaneous Recordings of Calcium Signals and Mechanical Activity Using Fluorescent Dye Fura 2 in Isolated Strips of Vascular Smooth Muscle”, Jpn. J. Pharmacol., 1987, 45, 429.

8) M. Mitsui, A. Abe, M. Tajimi and H. Karaki, “Leakage of the Fluorescent Ca2+ Indicator Fura-2 in Smooth Muscle”, Jpn. J. Pharmacol., 1993, 61, 165.

Q&A

 

 

 

Q1: 细胞内检测钙离子的试剂种类都有什么,选择什么样的比较好呢?

 

 

A1: 根据检测仪器和检测波长有很多的选择,产品后面标有AM的试剂是可以通过细胞膜的

有很多种相似的试剂,其特点如下:

【Fura 2】

•双波长激发

激发(λex= Ca:340 nm, Ca free:380 nm)、发射:λem=500 nm

•解离常数:224 nmol/L

•因为是荧光强度的比值、可以有效的减小误差

=>細胞内Ca浓度计算。

•该试剂被使用的最多

•必须要更换过滤片、会耽误一些时间。

【Fluo 3】

•单波长激发

激发:λex=508 nm、发射:λem=527 nm

•解离常数:400 nmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•不适合切片中钙离子的检测

•【Fluo 4】

•单波长激发

•激发:λex=495 nm、发射:λem=518 nm

•解离常数:360 nmol/L

•与Fluo3相比对荧光强度更高。

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。 •与Fluo3相比对細胞的毒性低

•【Indo 1】

•单波长激发

•激发:λex= 330 nm、发射(λem= Ca:410 nm, Ca free:485 nm)

•解离常数:250 nmol/L

•由于不需要更换滤光片,可以很快地检测细胞内钙离子浓度变化以及像心肌细胞运动中钙离子的变化

•(需要两台检测仪器)

•【Rhod 2】

•单波长激发

•激发:λex=553 nm、发射:λem=576 nm

•解离常数:1.0 μmol/L

•因为激发光在长波段,所以对细胞的损伤比较小

•(不会受到NADH、NADPH的影响)

•可以使用Ar激光激发装置。

•【Quin 2】

•单波长激发

•激发:λex=339 nm、发射:λem=492 nm

•解离常数:110 nmol/L

•最早开发的产品