Glycolysis/JC-1 MitoMP Assay Kit货号:G272

Glycolysis/JC-1 MitoMP Assay Kit货号:G272
糖酵解(乳酸生成量)和线粒体膜电位(JC-1)同时检测试剂盒
Glycolysis/JC-1 MitoMP Assay Kit
商品信息
储存条件:0-5度保存
运输条件:常温

特点:

● 一个样品同时检测两种指标

● 包含所有所需试剂

● 详细的操作步骤

下载说明书
宣传资料
选择规格:
50testsA
现货
\
规格性状
产品概述
产品特点
检测原理
实验例
常见问题Q&A

规格性状

image.png

产品概述

线粒体功能与细胞代谢之间的联系是众所周知的,对一系列疾病都有影响,包括癌症、衰老和神经退行性疾病。已经发现,衰老细胞通常依靠糖酵解系统生存,而不是利用线粒体能量来源。相反,即使糖酵解系统受到抑制,通常严重依赖糖酵解的癌细胞激活线粒体功能依然能确保其存活,。鉴于这些观察结果,越来越有必要研究线粒体功能和糖酵解途径,以增强我们对细胞内代谢改变的理解。我们的试剂盒允许测量乳酸产生(通过乳酸测定)以检测糖酵解系统的变化,以及线粒体膜电位(通过JC-1测定)以评估线粒体功能。该试剂盒的概念是提供来自同一样品的全面一站式检测,以跟踪细胞内代谢的变化并指导后续更详细的分析。该试剂盒包括检测所需的所有试剂,还提供组合方案。

1686013168430228.png

1686013182374602.png

1686013205819173.png

产品特点

任何刺激引起的细胞内代谢变化都可以通过测量乳酸产生和线粒体膜电位来检测。

在某些情况下,尽管细胞糖酵解系统或线粒体功能(能量产生的主要途径)受到损害,但细胞仍设法存活。据了解,这是因为细胞努力通过增强糖酵解来持续并防止细胞死亡,即使线粒体功能受损,或者在糖酵解受损时激活线粒体功能,同时监测糖酵解系统和线粒体功能。如下所述,可以深入了解细胞内发生的事情。

1686013695469824.png

同时测量同一样品

通过从单个样品中分离上清液和细胞,可以同时测量线粒体膜电位(JC-1测定)和乳酸产生。详细的测量方法在说明书中描述。

1686015510691639.png

检测原理

该试剂盒包括乳酸检测试剂盒,旨在通过测量WST甲臜吸光度来检测细胞培养基中的乳酸产生。此外,它还具有JC-1染料,用于使用荧光测量检测细胞内的线粒体膜电位。使用酶标仪在同一样品上轻松定量这两个靶标,便于评估代谢变化。

1686013436783590.png

实验例

用糖酵解抑制剂2-脱氧-D-葡萄糖(2-DG)处理的HeLa细胞的细胞内代谢变化

当我们使用CCK-8*测定法评估8-DG处理的HeLa细胞的细胞活力时,我们观察到活力的微小变化。然而,鉴于观察到乳酸产生的减少,它促使我们质疑尽管糖酵解系统受到抑制,如何维持细胞活力。为了回答这个问题,我们使用JC-1测定法检查了线粒体膜电位。这项研究的结果表明,当糖酵解系统被2-DG抑制时,HeLa细胞通过增强线粒体功能来维持其存活。

※ 细胞计数试剂盒-8(产品代码:CK04)不包含在本试剂盒中。

1685411575641939.png

常见问题Q&A

Q:每个试剂盒可以检测多少样品?
A:【乳酸测定】按每个样品3个复孔计算,您可以检测到如下样品数量

1686190993685203.png

*如果样品的乳酸浓度未知,请进行预实验,以确定稀释比例,使其低于1 mmol/l乳酸标准溶液的吸光度。 请参照说明书中“检测样品的制备”。

*进行预实验或不进行预实验时,可检测的最大样品数详见以上表格。

*进行乳酸测定时,如培养基含有血清,建议制备一个含血清的培养基的测量样品,作为背景对照。

1686190785419214.png

乳酸测定的孔板设置示例(n = 3)

(左:无预实验,右:预实验)

【JC-1 检测】

1686191659983809.png

※ 本试剂盒,至少可使用96孔板检测48个孔。

Q: 使用此试剂盒进行乳酸检测和 JC-1 检测需要多长时间?
A: 实验流程和每次测定所需的时间(大约)如下图所示。

1686191986780370.png

Q: 【乳酸检测】是否可以先进行乳酸测定,然后在收集上清液后进行JC-1测定?
A: 如果首先进行乳酸测定,测量时间的差异可能会由于刺激条件的不同而影响结果。 收集上清液后,请务必先进行JC-1测定。 细胞培养上清液可冷冻(-20°C)保存1个月。
Q: 【乳酸检测】乳酸测定可以使用450 nm以外的波长进行测量吗?
A: 除了 450 nm 外,它还可与 490 nm 滤光片一起使用。 但是,吸光度值会低于在450nm处测量时的值。1686192184333192.png
Q: 【乳酸检测】乳酸测定可以测量含有还原性物质的样品吗?
A:如果样品中含有还原性物质,染料WST会变色,您可能无法准确测量乳酸的变化。 如果您的检测物质中含有还原性物质,请准备一些只有待测物+培养基的孔【不含细胞】,作为背景对照。最后计算时,从标准曲线/样品吸光度结果中扣除以上背景对照。
Q:【乳酸检测】工作液稳定性如何?
A:工作液无法保存。 请现配现用。 另外,由于它对光不稳定,因此避光,工作液在室温避光条件下,可稳定保存4个小时。

一旦工作液未避光,则颜色会从红色变为橙色,从而导致背景的增加。

Q:【乳酸检测】细胞培养上清液样品可以保存吗?
A:可以冷冻(-20°C)储存1个月。
Q:【JC-1 检测】我可以使用含血清的培养基吗?
A:含血清的培养基可以在清洗细胞或制备JC-1工作液时使用,在荧光观察时,我们建议使用Imaging Buffer溶液,但如果一定要使用含血清的培养基,也建议使用无酚红的培养基。
Q:【JC-1检测】是否可以固定细胞?
A:不建议,由于线粒体固定后会发生去极化,因此染色后固定和固定后染色都是不可能的。
Q:【乳酸检测】检测到的样品的吸光度与空白孔的吸光度相同, 原因和解决方案是什么?
A:原因可能是细胞释放的乳酸量低。 首先,请增加要接种的细胞数量或进一步延长孵育时间。
Q:【JC-1检测】如何解释增加(或减少)红色和绿色的荧光值的结果?
A:计算每个药物处理后的样品和对照组的红色与绿色荧光值的比率。将两者进行比较,荧光比越低,线粒体膜电位越低。

 

【按红/绿比评估的原因】

由于JC-1以膜电位依赖性方式在细胞中积累,因此每个细胞的JC-1浓度可能因细胞的状态而变化1),2)(由于细胞条件的不同,实验组和对照组的JC-1累积浓度不同)。

此外,当线粒体膜电位高时,JC-1聚集,其荧光从绿色变为红色。

JC-1累积的量则取决于膜电位3)因此样品的线粒体膜电位变化可以通过红/绿比进行分析比较。

〈参考资料〉

1) A. Cossarizza, et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2) A. Perelman, et al., Cell Death and Disease, 2012, 3, e430.

3) S. T. Smiley, et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
线粒体膜电位检测试剂盒
JC-1 MitoMP Detection Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 灵敏度高

● 易上手

● 多种仪器均可检测

 

下载说明书
产品文献
SDS下载
JC-1宣传资料
常见问答
线粒体宣传资料
通路图下载
线粒体讲座
选择规格:
1set
现货
易溶解
可使用于各种仪器
专用成像缓冲液
更多线粒体检测方案(点击查看)
产品解说
活动进行中
试剂盒内含
产品概述
产品特点
操作步骤
实验例
参考文献
常见问题Q&A

产品解说

 

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    ROS Assay Kit    活性氧检测

NO.3.    FerroOrange    细胞亚铁离子检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

 

试剂盒内含

1609139988702345.png

产品概述

细胞中的线粒体作为有氧呼吸产生ATP的主要场所,是体内重要的细胞器之一,常被用于早期细胞毒性、氧化应激、细胞凋亡等研究中1)。线粒体活性的降低与机能失调,已被证实与癌症、衰老、神经退行性疾病 (如阿尔兹海默症、帕金森病等) 等密切相关2)3)

JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色 (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。以往的研究者反映,JC-1不易溶于水并有大量沉淀产生。但与其他公司的产品不同,同仁化学研究所研制的JC-1试剂解决了这一问题,避免了沉淀的产生。同时使用试剂盒中配制的成像缓冲液 (Imaging Buffer),可大幅降低荧光背景并在检测过程中保护细胞不受损伤。

当JC-1工作液的浓度为2 μmol/l, 每次用量为100 μl时,可以检测500次。

产品特点

1.为什么要检测线粒体膜电位

线粒体不仅是细胞内产生能量的场所,它还与癌症、衰老、阿尔兹海默症、帕金森等神经变异性疾病密切相关。因此,针对线粒体状态的研究非常重要,其中线粒体膜电位的变化经常被作为重要的指标之一检测。

当线粒体正常、膜电位差保持不变时,JC-1会聚集并发出红色荧光,而当膜电位降低时,JC-1会作为单体存在并发出绿色荧光。红色和绿色荧光强度的变化可以作为检测线粒体状态的指标。

1622686240109345.png

2.初次使用也很容易上手

1622685787216106.png

3.去极化的检测实例

使用去极化剂carbonylcyanide-p-trifluoromethoxyphenylhydrazone(FCCP)对HeLa细胞进行处理,用本试

剂盒进行检测。可以发现与未加药物的细胞相比,加药组细胞的红色荧光明显减少。

1606294523249551.png

实验条件

JC-1浓度: 2 μmol/l in MEM, 染色时间30 min

FCCP浓度:100 μmol/l, FCCP处理时间1 h

检测条件

Green : Ex 488 nm/ Em 500-550 nm;

Red : Ex 561 nm/ Em 560-610 nm;

标尺: 20 μm

操作步骤

1622686397951608.png

实验例

1.诱导凋亡的实验例

1.1 荧光显微镜

通过荧光颜色的改变判断由凋亡导致的线粒体膜电位的变化。

1606294576462329.png

检测条件

Green: Ex 488 nm / Em 500-550 nm

Red : Ex 561 nm / Em 560-610 nm

标尺: 80 μm

1.2 流式细胞仪

定量分析单个细胞的膜电位变化

1606294604378214.png

检测条件

Green: Ex 488 nm / Em 515-545 nm

Red : Ex 488 nm / Em 564-604 nm

1.3 酶标仪

确认孔板中吸光度来判断线粒体膜电位的变化

1608196394916701.png

检测条件

Green: Ex 485 nm / Em 525-545 nm

Red : Ex 535 nm / Em 585-605 nm

2.诱导自噬的实验例

使用表达Parkin的HeLa细胞,分别使用线粒体自噬试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit: MT09)来观察添加和不添加CCCP(羰基氰化物间氯苯)的线粒体状态的变化。

结果证明在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 而在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光的降低)和线粒体的自噬(Mtphagy染料的荧光的增强)。

<检测条件>

线粒体自噬检测

Ex:561 nm,Em:570-700 nm

线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

实验条件

1.将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

然后过夜培养,收集细胞进行以下检测。

2.自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。荧光显微镜下观察处理后的细胞。

3.线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作溶液使终浓度至2 μmol/l,并将细胞溶液在37℃下孵育30分钟。孵育后将细胞用HBSS洗涤,加入成像缓冲液,在荧光显微镜下观察细胞。

1606294718424606.png

3.线粒体膜电位与细胞周期关联性

将已知能在细胞周期的G2/M期起作用以终止细胞增殖并诱导细胞衰老的阿霉素(DOX)加入A549细胞后,

使用细胞周期检测试剂盒蓝色(产品代码:C549)/深红色(产品代码:C548)后检测。

结果证实了A549细胞的细胞周期确实发生了变化,同时用细胞衰老检测试剂盒–SPiDER-βGal(产品代码:SG03)证实了细胞产生衰老,实验证实了线粒体膜电位会发生变化。

1612339613332767.png

1622681451822025.png

参考文献

No. Sample Type Instrument Reference
1 Cell:A549 Microscope K. Li, S. Sun, L. Xiao and Z. Zhang, “Bioactivity-guided fractionation of Helicteres   angustifolia L. extract and its molecular evidence for tumor   suppression”, Front Cell Dev Biol.,2023, doi:   10.3389/fcell.2023.1157172.
2 Cell:A549 Flow Cytometer C. N. D’Alessandro-Gabazza, T. Yasuma, T.   Kobayashi, M. Toda1, A. M. Abdel-Hamid, H. Fujimoto, O. Hataji, H. Nakahara,   A. Takeshita, K. Nishihama, T. Okano, H. Saiki, Y. Okano, A. Tomaru, V. F.   D’Alessandro, M. Shiraishi, A. Mizoguchi, R. Ono, J. Ohtsuka, M. Fukumura, T.   Nosaka, X. Mi, D. Shukla, K. Kataoka, Y. Kondoh, M. Hirose, T. Arai, Y.   Inoue, Y. Yano, R. I. Mackie, I. Cann and E. C.   Gabazza, “Inhibition of lung microbiota-derived proapoptotic   peptides ameliorates acute exacerbation of pulmonary   fibrosis”, Nat. Comm., 2022, doi:10.1038/s41467-022-29064-3.
3 Cell:A549, HeLa Plate reader J. Yang, L. Liu, Y. Oda, K. Wada, M. Ago, S.   Matsuda, M. Hattori, T. Goto, Y. Kawashima, Y. Matsuzaki and T.   Taketani,”Highly-purified rapidly expanding clones, RECs, are superior   for functional-mitochondrial transfer”, Stem Cell Res Ther., 2023,   doi: 10.1186/s13287-023-03274-y.
4 Cell:ALM Plate reader T. Nechiporuk, S.E. Kurtz, O. Nikolova, T.   Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K. Joshi, M.   Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang, S. K   McWeeney and J. W. Tyner , “The TP53 Apoptotic Network Is a   Primary Mediator of Resistance to BCL2 Inhibition in AML   Cells.”, Cancer Discov, 2019, 9,
5 Cell:ARPE-19 Flow Cytometer/ J. Hamuro, T. Yamashita, Y. Otsuki, N.   Hiramoto, M. Adachi, T. Miyatani, H. Tanaka, M. Ueno, S. Kinoshita and C.   Sotozono,”Spatiotemporal Coordination of RPE Cell Quality by   Extracellular Vesicle miR-494-3p Via Competitive Interplays With SIRT3 or PTEN”, Invest   Ophthalmol Vis Sci., 2023, doi: 10.1167/iovs.64.5.9.
6 Cell:ARPE-19 Microscope J. H. Quan, F. F. Gao, H. A. Ismail, J. M.    Yuk, G. H. Cha, J. Q. Chu and Y. H. Lee,  “Silver   Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma   gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation”, Int   J Nanomedicine., 2020, 15, 3695–3716.
7 Cell:C2C12, myocytes Z. Jing, T. Iba, H. Naito, P. Xu, J.I.   Morishige, N. Nagata, H. Okubo and H.Ando ,”L-carnitine   prevents lenvatinib-induced muscle toxicity without impairment of the   anti-angiogenic efficacy”, Front Pharmacol., 2023, doi:   10.3389/fphar.2023.1182788.
8 Cell:C2C12, 3T3L1 Plate reader M. Kurano, K. Tsukamoto, T. Shimizu, H.   Kassai, K. Nakao, A. Aiba, M. Hara and Yatomi , “Protection   Against Insulin Resistance by Apolipoprotein M/Sphingosine   1-Phosphate “, Diabetes, 2020, DOI:   10.2337/db19-0811.
9 Cell:Colon 26 Microscope B. Uranbileg, M. Kurano, K. Kano, E. Sakai, J.   Arita, K. Hasegawa, T. Nishikawa, S. Ishihara, H. Yamashita, Y. Seto, H.   Ikeda, J. Aoki and Y. Yatomi,”Sphingosine 1‐phosphate lyase facilitates   cancer progression through converting sphingolipids to glycerophospholipids”, Clin   Transl Med., 2022, doi: 10.1002/ctm2.1056.
10 Tissue:
Frozen heart slides
Microscope W. Yu, Y. Hu, Z. Liu, K. Guo, D. Ma, M. Peng,   Y. Wang, J. Zhang, X. Zhang, P. Wang, J. Zhang, P. Liu and J.   Lu,”Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via   regulation of TFRC-dependent ferroptosis”, Acta Pharmaceutica   Sinica B., 2023, doi: https://doi.org/10.1016/j.apsb.2023.08.016.
11 Cell:HCE Microscope T. Yamashita, K. Asada, M. Ueno, N. Hiramoto,   T. Fujita, M. Toda, C. Sotozono, S. Kinoshita and J. Hamuro,”Cellular   interplay through extracellular vesicle miR-184 alleviates corneal   endothelium degeneration”, Ophthalmol Sci., 2022, doi:   10.1016/j.xops.2022.100212.
12 Cell:HCE Microscope M. Ueno, K Yoshii, T. Yamashita, K. Sonomura,   K. Asada, E. Ito, T. Fujita, C. Sotozono, S. Kinoshita and J.   Hamuro,”The Interplay Between Metabolites and MicroRNAs in Aqueous Humor   to Coordinate Corneal Endothelium Integrity”, Ophthalmol Sci., 2023,   doi: 10.1016/j.xops.2023.100299.
13 Cell:HCE-T W. Otsu, T. Yako, E. Sugisawa, S. Nakamura, H.   Tsusaki, N. Umigai, M. Shimazawa and H. Hara,”Crocetin protects against   mitochondrial damage induced by UV-A irradiation in corneal epithelial cell   line HCE-T cells”, J Pharmacol Sci., 2022, doi:   10.1016/j.jphs.2022.10.005.
14 Cell:HCE-T Microscope K. Ishida, T. Yako, M. Tanaka, W. Otsu, S.   Nakamura, M. Shimazawa, H. Tsusaki and H. Hara,”Free-radical   scavenger NSP-116 protects the corneal epithelium against UV-A and blue led   light exposure”, Biol Pharm Bull., 2021, doi:   10.1248/bpb.b21-00017.
15 Cell:HepG Microscope/Spectrophotometer M. Ikura, K. Furuya, T. Matsuda and T. Ikura,”Impact of Nuclear De Novo NAD+ Synthesis via Histone   Dynamics on DNA Repair during Cellular Senescence To Prevent   Tumorigenesis”, Mol Cell Biol., 2022, doi:   10.1128/mcb.00379-22.
16 Cell:hiPSCs, Neurons Microscope T. Hara, M. Toyoshima, Y. Hisano, S. Balan, Y.   Iwayama, H. Aono,Y. Futamura, H. Osada, Y. Owada and T.   Yoshikawa,”Glyoxalase I disruption and external carbonyl stress impair   mitochondrial function in human induced pluripotent stem cells and derived neurons”, Translational   Psychiatry., 2021, doi: 10.1038/s41398-021-01392-w.
17 Cell:HSCs Microscope Y. Su, S. Lu, C. Hou, K. Ren, M. Wang, X. Liu,   S. Zhao and X. Liu ,”Mitigation of liver fibrosis   via hepatic stellate cells mitochondrial apoptosis induced by   metformin”, International Immunopharmacology., 2022, doi:   10.1016/j.intimp.2022.108683.
18 Cell:HUVECs Microscope D. Ueno, K. Ikeda, E. Yamazaki, A. Katayama,   R. Urata and S. Matoba ,”Spermidine improves   angiogenic capacity of senescent endothelial cells, and enhances   ischemia-induced neovascularization in aged mice”, Sci   Rep., 2023, doi: 10.1038/s41598-023-35447-3.
19 Cell:KYSE30 Microscope Q. Luo, X. Wu, P. Zhao, Y. Nan, W. Chang, X.   Zhu, D. Su and Z. Liu,”OTUD1 activates   caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear   translocation and MCL1 degradation”, Adv Sci (Weinh)., 2021,   doi: 10.1002/advs.202002874.
20 Cell: Macrophage Microscope G. Yang, M. Fan, J. Zhu, C. Ling, L. Wu, X.   Zhang, M. Zhang, J. Li, Q. Yao, Z. Gu and X. Cai, “A   multifunctional anti-inflammatory drug that can specifically target activated   macrophages  massively deplete intracellular H2O2 and produce   large amounts CO for a highly efficient treatment of   osreoarthritis”  , Biomaterials, 2020,  doi:10.1016/j.biomaterials.2020.120155.
21 Cell:MDA-MB-415, MCF-7 Microscope S.Y. Park, K.J. Jeong, A. Poire, D. Zhang,   Y.H. Tsang, A.S. Blucher and G.B. Mills ,”Irreversible HER2 inhibitors   overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified   luminal breast cancer”, Cell Death & Disease., 2023, doi:   10.1038/s41419-023-06042-1.
22 Cell:MIN6 Plate reader/Microscope N. Mizusawa, N. Harada, T. Iwata, I. Ohigashi,   M. Itakura and K. Yoshimoto,”Identification of   protease serine S1 family member 53 as a mitochondrial protein in murine   islet beta cells”, Islets., 2022, doi:   10.1080/19382014.2021.1982325.
23 Cell:MSCs Flow Cytometer S.Y. Jo, H.J. Cho and T.M. Kim,”Fenoldopam mesylate enhances the survival of mesenchymal   stem cells under oxidative stress and increases the therapeutic function in   acute kidney injury”, Cell Transplant., 2023, doi:   10.1177/09636897221147920.
24 Cell:Neuro-2A Microscope、Plate reader Y. Wang, Y. Shinoda, A. Cheng, I. Kawahata and   K. Fukunaga,”Epidermal fatty acid-binding protein 5   (FABP5) Involvement in alpha-synuclein-induced mitochondrial injury under   oxidative stress”, Biomedicines., 2021, doi:   10.3390/biomedicines9020110.
25 Cell:Neuron Microscope I. Kawahata, L. Luc Bousset, R.   Melki and K. Fukunaga , “Fatty   Acid-Binding Protein 3 is Critical for α-Synuclein Uptake and MPP+-Induced   Mitochondrial Dysfunction in Cultured Dopaminergic Neurons “, Int J   Mol Sci., 2019, 20, 5358.
26 Cell:Neuron Microscope A. Fukuda, S. Nakashima,Y. Oda, K. Nishimura,   H. Kawashima, H. Kimura, T. Ohgita, E. Kawashita, K. Ishihara, A. Hanaki, M.   Okazaki, E. Matsuda, Y. Tanaka, S. Nakamura, T. Matsumoto, S. Akiba, H.   Saito, H. Matsuda and K. Takata,”Plantainoside B in Bacopa monniera   Binds to Aβ Aggregates Attenuating Neuronal Damage and Memory Deficits   Induced by Aβ”, Biol Pharm Bull., 2023, doi:   10.1248/bpb.b22-00797.
27 Cell:PAECs Plate reader T. Sakai, H. Takagaki, N. Yamagiwa, M. Ui, S.   Hatta and J. Imai,”Effects of the cytoplasm and mitochondrial specific   hydroxyl radical scavengers TA293 and mitoTA293 in bleomycin-induced   pulmonary fibrosis model mice”, Antioxidants (Basel)., 2021,   doi: 10.3390/antiox10091398.
28 Cell:PANC-1 Plate reader W.A. Naime, A. Kimishima, A. Setiawan, J.R.   Fahim, M.A. Fouad, M.S. Kamel and M. Arai,”Mitochondrial Targeting in an   Anti-Austerity Approach Involving Bioactive Metabolites Isolated from the   Marine-Derived Fungus Aspergillus sp.”, Marine drugs., 2020,   doi: 10.3390/md18110555.
29 Cell:PANC-1, MIAPaca-2 Microscope T. Taniai, Y. Shirai,Y. Shimada, R. Hamura, M.   Yanagaki, N. Takada, T. Horiuchi, K. Haruki, K. Furukawa, T. Uwagawa, K.   Tsuboi, Y. Okamoto, S. Shimada, S. Tanaka, T. Ohashi and T.   Ikegami,”Inhibition of acid ceramidase elicits mitochondrial dysfunction   and oxidative stress in pancreatic cancer cells”, Cancer   Sci., 2021, doi: 10.1111/cas.15123.
30 Cell:PC Flow Cytometer R. Hamura, Y. Shirai,Y. Shimada, N. Saito, T.   Taniai, T. Horiuchi, N. Takada, Y. Kanegae, T. Ikegami, T. Ohashi and K.   Yanaga ,”Suppression of lysosomal acid alpha‐glucosidase impacts the   modulation of transcription factor EB translocation in pancreatic   cancer”, Cancer Sci., 2021, doi: 10.1111/cas.14921.
31 Cell:Porcine oocytes Microscope W. Hu, Y. Zhang, D. Wang, T. Yang, J. Qi, Y.   Zhang, H. Jiang, J Zhang, B. Sun and S. Liang,”Iron Overload-Induced   Ferroptosis Impairs Porcine Oocyte Maturation and Subsequent Embryonic   Developmental Competence in vitro”, Front Cell Dev Biol., 2021,   doi: 10.3389/fcell.2021.673291.
32 Cell:Porcine oocytes Microscope Y. Xiao, B. Yuan, W. Hu, J. Qi, H. Jiang, B.   Sun, J. Zhang and S. Liang,”Tributyltin Oxide Exposure During in vitro   Maturation Disrupts Oocyte Maturation and Subsequent Embryonic Developmental   Competence in Pigs”, Front Cell Dev Biol., 2021, doi:   10.3389/fcell.2021.683448.
33 Cell:RGC-5 Plate reader Y. Aoyama, S. Inagaki, K. Aoshima, Y. Iwata,   S. Nakamura, H. Hara and M. Shimazawa,”Involvement of endoplasmic   reticulum stress in rotenone-induced leber hereditary optic neuropathy model   and the discovery of new therapeutic agents”, J Pharmacol Sci   . .,2021, doi: 10.1016/j.jphs.2021.07.003.
34 Cell:SAS,HSC-2 Plate reader K. Yamana, J. Inoue, R. Yoshida, J. Sakata, H.   Nakashima, H. Arita, S. Kawaguchi, S. Gohara, Y. Nagao, H. Takeshita, M.   Maeshiro, R. Liu, Y. Matsuoka, M. Hirayama, K. Kawahara, M. Nagata, A.   Hirosue, R. Toya, R. Murakami, Y. Kuwahara, M. Fukumoto and H. Nakayama,”Extracellular   vesicles derived from radioresistant oral squamous cell carcinoma cells   contribute to the acquisition of radioresistance via the miR‐503‐3p‐BAK   axis”, J Extracell Vesicles., 2021, doi: 10.1002/jev2.12169.
35 Cell:SBC-3 Flow Cytometer N. Takahashi, T. Iguchi, M. Kuroda, M. Mishima   and Y. Mimaki,”Novel Oleanane-Type Triterpene   Glycosides from the Saponaria officinalis L. Seeds and Apoptosis-Inducing   Activity via Mitochondria”, Int J Mol Sci., 2022, doi:   10.3390/ijms23042047.
36 Cell:SH-SY5Y Microscope Q. Guo, I. Kawahata, A. Cheng, H. Wang, W.   Jia, H. Yoshino and K. Fukunaga,”Fatty acid-binding   proteins 3 and 5 are involved in the initiation of mitochondrial damage in   ischemic neurons”, Redox Biology., 2023, doi:   10.1016/j.redox.2022.102547.
37 Cell:SiHa Microscope F.F. Gao, J.H. Quan, M.A. Lee, W. Ye, J.M.   Yuk, G.H. Cha, I.W. Choi and Y.H. Lee,”Trichomonas vaginalis induces   apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in   SiHa cells”, Parasites &vectors., 2021, doi:   10.1186/s13071-021-05098-2.
38 Cell:SU-DHL-2 Flow Cytometer Q. Zhao, D. Jiang, X. Sun, Q. Mo, S. Chen, W.   Chen, R. Gui and X. Ma,”Biomimetic nanotherapy: core–shell structured   nanocomplexes based on the neutrophil membrane for targeted therapy of   lymphoma”, J Nanobiotechnology., 2021, doi: 10.1186/s12951-021-00922-4.
39 Cell:THP-1 Microscope W. Zheng, Z. Zhou, Y. Rui, R. Ye, F. Xia, F.   Guo, X. Liu, J. Su, M. Lou, and X.F. Yu,”TRAF3   activates STING-mediated suppression of EV-A71 and target of viral   evasion”, Signal Transduct Target Ther., 2023, doi:   10.1038/s41392-022-01287-2.
40 Cell:TSM15 In Cell Analyzer M. Honda, F. Shimizu, R. Sato, Y. Mizukami, K.   Watanabe, Y. Takeshita, T. Maeda, M. Koga and T. Kanda,”Jo-1 Antibodies   From Myositis Induce Complement-Dependent Cytotoxicity and TREM-1   Upregulation in Muscle Endothelial Cells”, Neurol Neuroimmunol   Neuroinflamm., 2023, doi: 10.1212/NXI.0000000000200116.
41 Cell:tumor Flow Cytometer H. Wang, X. Rong, G. Zhao, Y. Zhou, Y. Xiao,   D. Ma, X. Jin, Y. Wu, Y. Yan, H. Yang, Y. Zhou, M. Qian, C. Niu, X. Hu, D.Q.   Li, Q. Liu, Y. Wen, Y.Z. Jiang, C. Zhao and Z.M. Shao ,”The microbial   metabolite trimethylamine N-oxide promotes antitumor immunity in   triple-negative breast cancer”, Cell Metab., 2022, doi:   10.1016/j.cmet.2022.02.010.
42 Cell:TY10 In Cell Analyzer F. Shimizu, R. Ogawa, Y. Mizukami, K.   Watanabe, K. Hara, C. Kadono, T. Takahashi, T. Misu, Y. Takeshita, Y. Sano,   M. Fujisawa, T. Maeda, I. Nakashima, K. Fujihara and T. Kanda,”GRP78   antibodies are associated with blood-brain barrier breakdown in anti–myelin   oligodendrocyte glycoprotein antibody–associated disorder”, Neurol   Neuroimmunol Neuroinflamm., 2022, doi: 10.1212/NXI.0000000000001038.
43 Cell:U2OS, HeLa Microscope T. Namba, “BAP31   regulates mitochondrial function via interaction with Tom40 within   ER-mitochondria contact sites “, Sci Adv., 2019, 5, (6),   1386.

常见问题Q&A

Q1: 本试剂盒可以检测多少次?
A1:大概的使用次数请参考下表:
检测装置 容器 使用次数 液量
流式细胞仪 100次 0.5 ml/次
荧光显微镜
荧光酶标仪
35 mm dish 25块板 2 ml/孔
8孔Chamber Slide 30块板 200 μl/孔
96孔板 5块板 100 μl/孔
Q2:在JC-1染色后,可以使用PBS代替HBSS洗涤吗?
A2:我们建议使用HBSS来减少对细胞的损伤。如果您手边没有HBSS的话,建议使用培养基洗净。
Q3:可以使用含血清的培养基吗?
A3:在清洗细胞和Working Solution中可以使用含血清的培养基。在观察荧光时建议使用Imaging Buffer。如果一定要使用含血清的培养基的话,建议不要加酚红。
Q4:染色后细胞固定或者固定后进行染色可以实现吗?
A4:细胞固定操作会使得线粒体去极化,所以染色前后均不能进行细胞固定。
 

Q5:处理后的样品与对照组相比较,红和绿两种荧光值都增加(或减少)了,结果该如何解释?

A5:请先比较实验组和对照组的荧光比值,两者相比,荧光比越低,线粒体膜电位越低。

用荧光之比进行结果分析的理由。

JC-1由于膜电位依存性地在细胞中积蓄,根据细胞的状态,每个细胞的JC-1的浓度有可能不同。

由于对照组和实验组处理样品的细胞状态不同,JC-1的累积浓度不同。)

另外,在线粒体膜电位较高的状态下,JC-1会聚集在一起,使荧光从绿色转移到红色。

该聚集体的量取决于膜电位的程度,因此可以用红/绿之比来比较样品之间的线粒体膜电位。

<参考文献>

1)    Cossarizza, A. et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2)    Perelman, A. et al., Cell Death and Disease, 2012, 3, e430

3)    Smiley, S. T. et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色
MitoBright LT Red试剂
线粒体长效荧光探针-红色

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09

线粒体膜电位检测试剂盒—JC-1 MitoMP Detection Kit货号:MT09
线粒体膜电位检测试剂盒
JC-1 MitoMP Detection Kit
商品信息
储存条件:0-5度保存
运输条件:室温

特点:

 

● 灵敏度高

● 易上手

● 多种仪器均可检测

 

下载说明书
产品文献
SDS下载
JC-1宣传资料
常见问答
线粒体宣传资料
通路图下载
线粒体讲座
选择规格:
1set
现货
易溶解
可使用于各种仪器
专用成像缓冲液
更多线粒体检测方案(点击查看)
产品解说
活动进行中
试剂盒内含
产品概述
产品特点
操作步骤
实验例
参考文献
常见问题Q&A

产品解说

活动进行中

订购满5000元,200元礼品等你拿

凑单关联产品TOP5

NO.1.    Cell Counting Kit-8     细胞增殖毒性检测   

NO.2.    ROS Assay Kit    活性氧检测

NO.3.    FerroOrange    细胞亚铁离子检测

NO.4.    GSSG/GSH Quantification Kit II    氧化型/还原型谷胱甘肽

NO.5.    Mitophagy Detection Kit    线粒体自噬检测

 

试剂盒内含

1609139988702345.png

产品概述

细胞中的线粒体作为有氧呼吸产生ATP的主要场所,是体内重要的细胞器之一,常被用于早期细胞毒性、氧化应激、细胞凋亡等研究中1)。线粒体活性的降低与机能失调,已被证实与癌症、衰老、神经退行性疾病 (如阿尔兹海默症、帕金森病等) 等密切相关2)3)

JC-1是一种被广泛使用的小分子线粒体膜电位探针,依赖于线粒体膜电位在线粒体中聚集,染料伴随聚集过程,荧光从绿色 (530 nm) 变为红色 (590 nm)。当线粒体发生去极化,红/绿荧光强度比值降低。以往的研究者反映,JC-1不易溶于水并有大量沉淀产生。但与其他公司的产品不同,同仁化学研究所研制的JC-1试剂解决了这一问题,避免了沉淀的产生。同时使用试剂盒中配制的成像缓冲液 (Imaging Buffer),可大幅降低荧光背景并在检测过程中保护细胞不受损伤。

当JC-1工作液的浓度为2 μmol/l, 每次用量为100 μl时,可以检测500次。

产品特点

1.为什么要检测线粒体膜电位

线粒体不仅是细胞内产生能量的场所,它还与癌症、衰老、阿尔兹海默症、帕金森等神经变异性疾病密切相关。因此,针对线粒体状态的研究非常重要,其中线粒体膜电位的变化经常被作为重要的指标之一检测。

当线粒体正常、膜电位差保持不变时,JC-1会聚集并发出红色荧光,而当膜电位降低时,JC-1会作为单体存在并发出绿色荧光。红色和绿色荧光强度的变化可以作为检测线粒体状态的指标。

1622686240109345.png

2.初次使用也很容易上手

1622685787216106.png

3.去极化的检测实例

使用去极化剂carbonylcyanide-p-trifluoromethoxyphenylhydrazone(FCCP)对HeLa细胞进行处理,用本试

剂盒进行检测。可以发现与未加药物的细胞相比,加药组细胞的红色荧光明显减少。

1606294523249551.png

实验条件

JC-1浓度: 2 μmol/l in MEM, 染色时间30 min

FCCP浓度:100 μmol/l, FCCP处理时间1 h

检测条件

Green : Ex 488 nm/ Em 500-550 nm;

Red : Ex 561 nm/ Em 560-610 nm;

标尺: 20 μm

操作步骤

1622686397951608.png

实验例

1.诱导凋亡的实验例

1.1 荧光显微镜

通过荧光颜色的改变判断由凋亡导致的线粒体膜电位的变化。

1606294576462329.png

检测条件

Green: Ex 488 nm / Em 500-550 nm

Red : Ex 561 nm / Em 560-610 nm

标尺: 80 μm

1.2 流式细胞仪

定量分析单个细胞的膜电位变化

1606294604378214.png

检测条件

Green: Ex 488 nm / Em 515-545 nm

Red : Ex 488 nm / Em 564-604 nm

1.3 酶标仪

确认孔板中吸光度来判断线粒体膜电位的变化

1608196394916701.png

检测条件

Green: Ex 485 nm / Em 525-545 nm

Red : Ex 535 nm / Em 585-605 nm

2.诱导自噬的实验例

使用表达Parkin的HeLa细胞,分别使用线粒体自噬试剂盒(Mitophagy Detection Kit:MD01)和线粒体膜电位检测试剂盒(JC-1 MitoMP Detection Kit: MT09)来观察添加和不添加CCCP(羰基氰化物间氯苯)的线粒体状态的变化。

结果证明在未经CCCP处理的细胞中几乎未检测到线粒体自噬的发生,并且线粒体膜电位正常维持。 而在添加了CCCP的细胞中,证实了线粒体膜电位的降低(JC-1的红色荧光的降低)和线粒体的自噬(Mtphagy染料的荧光的增强)。

<检测条件>

线粒体自噬检测

Ex:561 nm,Em:570-700 nm

线粒体膜电位检测

绿色Ex:488 nm,Em:500-550 nm

红色Ex:561 nm,Em:560-610 nm

实验条件

1.将Parkin质粒导入HeLa细胞

使用HilyMax(货号:H357)将Parkin质粒引入HeLa细胞中(Parkin质粒/HilyMax试剂:0.1 μg/0.2 μl)

然后过夜培养,收集细胞进行以下检测。

2.自噬检测

向表达Parkin的HeLa细胞中添加0.1 μmol/l Mtphagy工作溶液,并在37°C下孵育30分钟。然后将细胞用HBSS洗涤,加入10 μg/ml CCCP/MEM溶液,并在37℃下孵育2小时。荧光显微镜下观察处理后的细胞。

3.线粒体膜电位检测

将10 μg/ml的CCCP/MEM溶液添加至表达Parkin的HeLa细胞中,并在37℃下孵育1.5小时。加入4 μmol/l的JC-1工作溶液使终浓度至2 μmol/l,并将细胞溶液在37℃下孵育30分钟。孵育后将细胞用HBSS洗涤,加入成像缓冲液,在荧光显微镜下观察细胞。

1606294718424606.png

3.线粒体膜电位与细胞周期关联性

将已知能在细胞周期的G2/M期起作用以终止细胞增殖并诱导细胞衰老的阿霉素(DOX)加入A549细胞后,

使用细胞周期检测试剂盒蓝色(产品代码:C549)/深红色(产品代码:C548)后检测。

结果证实了A549细胞的细胞周期确实发生了变化,同时用细胞衰老检测试剂盒–SPiDER-βGal(产品代码:SG03)证实了细胞产生衰老,实验证实了线粒体膜电位会发生变化。

1612339613332767.png

1622681451822025.png

参考文献

No. Sample Type Instrument Reference
1 Cell:A549 Microscope K. Li, S. Sun, L. Xiao and Z. Zhang, “Bioactivity-guided fractionation of Helicteres   angustifolia L. extract and its molecular evidence for tumor   suppression”, Front Cell Dev Biol.,2023, doi:   10.3389/fcell.2023.1157172.
2 Cell:A549 Flow Cytometer C. N. D’Alessandro-Gabazza, T. Yasuma, T.   Kobayashi, M. Toda1, A. M. Abdel-Hamid, H. Fujimoto, O. Hataji, H. Nakahara,   A. Takeshita, K. Nishihama, T. Okano, H. Saiki, Y. Okano, A. Tomaru, V. F.   D’Alessandro, M. Shiraishi, A. Mizoguchi, R. Ono, J. Ohtsuka, M. Fukumura, T.   Nosaka, X. Mi, D. Shukla, K. Kataoka, Y. Kondoh, M. Hirose, T. Arai, Y.   Inoue, Y. Yano, R. I. Mackie, I. Cann and E. C.   Gabazza, “Inhibition of lung microbiota-derived proapoptotic   peptides ameliorates acute exacerbation of pulmonary   fibrosis”, Nat. Comm., 2022, doi:10.1038/s41467-022-29064-3.
3 Cell:A549, HeLa Plate reader J. Yang, L. Liu, Y. Oda, K. Wada, M. Ago, S.   Matsuda, M. Hattori, T. Goto, Y. Kawashima, Y. Matsuzaki and T.   Taketani,”Highly-purified rapidly expanding clones, RECs, are superior   for functional-mitochondrial transfer”, Stem Cell Res Ther., 2023,   doi: 10.1186/s13287-023-03274-y.
4 Cell:ALM Plate reader T. Nechiporuk, S.E. Kurtz, O. Nikolova, T.   Liu, C.L. Jones, A. D. Alessandro, R. C. Hill, A. Almeida, S. K. Joshi, M.   Rosenberg, C. E. Tognon, A. V. Danilov, B. J. Druker, B. H. Chang, S. K   McWeeney and J. W. Tyner , “The TP53 Apoptotic Network Is a   Primary Mediator of Resistance to BCL2 Inhibition in AML   Cells.”, Cancer Discov, 2019, 9,
5 Cell:ARPE-19 Flow Cytometer/ J. Hamuro, T. Yamashita, Y. Otsuki, N.   Hiramoto, M. Adachi, T. Miyatani, H. Tanaka, M. Ueno, S. Kinoshita and C.   Sotozono,”Spatiotemporal Coordination of RPE Cell Quality by   Extracellular Vesicle miR-494-3p Via Competitive Interplays With SIRT3 or PTEN”, Invest   Ophthalmol Vis Sci., 2023, doi: 10.1167/iovs.64.5.9.
6 Cell:ARPE-19 Microscope J. H. Quan, F. F. Gao, H. A. Ismail, J. M.    Yuk, G. H. Cha, J. Q. Chu and Y. H. Lee,  “Silver   Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma   gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation”, Int   J Nanomedicine., 2020, 15, 3695–3716.
7 Cell:C2C12, myocytes Z. Jing, T. Iba, H. Naito, P. Xu, J.I.   Morishige, N. Nagata, H. Okubo and H.Ando ,”L-carnitine   prevents lenvatinib-induced muscle toxicity without impairment of the   anti-angiogenic efficacy”, Front Pharmacol., 2023, doi:   10.3389/fphar.2023.1182788.
8 Cell:C2C12, 3T3L1 Plate reader M. Kurano, K. Tsukamoto, T. Shimizu, H.   Kassai, K. Nakao, A. Aiba, M. Hara and Yatomi , “Protection   Against Insulin Resistance by Apolipoprotein M/Sphingosine   1-Phosphate “, Diabetes, 2020, DOI:   10.2337/db19-0811.
9 Cell:Colon 26 Microscope B. Uranbileg, M. Kurano, K. Kano, E. Sakai, J.   Arita, K. Hasegawa, T. Nishikawa, S. Ishihara, H. Yamashita, Y. Seto, H.   Ikeda, J. Aoki and Y. Yatomi,”Sphingosine 1‐phosphate lyase facilitates   cancer progression through converting sphingolipids to glycerophospholipids”, Clin   Transl Med., 2022, doi: 10.1002/ctm2.1056.
10 Tissue:
Frozen heart slides
Microscope W. Yu, Y. Hu, Z. Liu, K. Guo, D. Ma, M. Peng,   Y. Wang, J. Zhang, X. Zhang, P. Wang, J. Zhang, P. Liu and J.   Lu,”Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via   regulation of TFRC-dependent ferroptosis”, Acta Pharmaceutica   Sinica B., 2023, doi: https://doi.org/10.1016/j.apsb.2023.08.016.
11 Cell:HCE Microscope T. Yamashita, K. Asada, M. Ueno, N. Hiramoto,   T. Fujita, M. Toda, C. Sotozono, S. Kinoshita and J. Hamuro,”Cellular   interplay through extracellular vesicle miR-184 alleviates corneal   endothelium degeneration”, Ophthalmol Sci., 2022, doi:   10.1016/j.xops.2022.100212.
12 Cell:HCE Microscope M. Ueno, K Yoshii, T. Yamashita, K. Sonomura,   K. Asada, E. Ito, T. Fujita, C. Sotozono, S. Kinoshita and J.   Hamuro,”The Interplay Between Metabolites and MicroRNAs in Aqueous Humor   to Coordinate Corneal Endothelium Integrity”, Ophthalmol Sci., 2023,   doi: 10.1016/j.xops.2023.100299.
13 Cell:HCE-T W. Otsu, T. Yako, E. Sugisawa, S. Nakamura, H.   Tsusaki, N. Umigai, M. Shimazawa and H. Hara,”Crocetin protects against   mitochondrial damage induced by UV-A irradiation in corneal epithelial cell   line HCE-T cells”, J Pharmacol Sci., 2022, doi:   10.1016/j.jphs.2022.10.005.
14 Cell:HCE-T Microscope K. Ishida, T. Yako, M. Tanaka, W. Otsu, S.   Nakamura, M. Shimazawa, H. Tsusaki and H. Hara,”Free-radical   scavenger NSP-116 protects the corneal epithelium against UV-A and blue led   light exposure”, Biol Pharm Bull., 2021, doi:   10.1248/bpb.b21-00017.
15 Cell:HepG Microscope/Spectrophotometer M. Ikura, K. Furuya, T. Matsuda and T. Ikura,”Impact of Nuclear De Novo NAD+ Synthesis via Histone   Dynamics on DNA Repair during Cellular Senescence To Prevent   Tumorigenesis”, Mol Cell Biol., 2022, doi:   10.1128/mcb.00379-22.
16 Cell:hiPSCs, Neurons Microscope T. Hara, M. Toyoshima, Y. Hisano, S. Balan, Y.   Iwayama, H. Aono,Y. Futamura, H. Osada, Y. Owada and T.   Yoshikawa,”Glyoxalase I disruption and external carbonyl stress impair   mitochondrial function in human induced pluripotent stem cells and derived neurons”, Translational   Psychiatry., 2021, doi: 10.1038/s41398-021-01392-w.
17 Cell:HSCs Microscope Y. Su, S. Lu, C. Hou, K. Ren, M. Wang, X. Liu,   S. Zhao and X. Liu ,”Mitigation of liver fibrosis   via hepatic stellate cells mitochondrial apoptosis induced by   metformin”, International Immunopharmacology., 2022, doi:   10.1016/j.intimp.2022.108683.
18 Cell:HUVECs Microscope D. Ueno, K. Ikeda, E. Yamazaki, A. Katayama,   R. Urata and S. Matoba ,”Spermidine improves   angiogenic capacity of senescent endothelial cells, and enhances   ischemia-induced neovascularization in aged mice”, Sci   Rep., 2023, doi: 10.1038/s41598-023-35447-3.
19 Cell:KYSE30 Microscope Q. Luo, X. Wu, P. Zhao, Y. Nan, W. Chang, X.   Zhu, D. Su and Z. Liu,”OTUD1 activates   caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear   translocation and MCL1 degradation”, Adv Sci (Weinh)., 2021,   doi: 10.1002/advs.202002874.
20 Cell: Macrophage Microscope G. Yang, M. Fan, J. Zhu, C. Ling, L. Wu, X.   Zhang, M. Zhang, J. Li, Q. Yao, Z. Gu and X. Cai, “A   multifunctional anti-inflammatory drug that can specifically target activated   macrophages  massively deplete intracellular H2O2 and produce   large amounts CO for a highly efficient treatment of   osreoarthritis”  , Biomaterials, 2020,  doi:10.1016/j.biomaterials.2020.120155.
21 Cell:MDA-MB-415, MCF-7 Microscope S.Y. Park, K.J. Jeong, A. Poire, D. Zhang,   Y.H. Tsang, A.S. Blucher and G.B. Mills ,”Irreversible HER2 inhibitors   overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified   luminal breast cancer”, Cell Death & Disease., 2023, doi:   10.1038/s41419-023-06042-1.
22 Cell:MIN6 Plate reader/Microscope N. Mizusawa, N. Harada, T. Iwata, I. Ohigashi,   M. Itakura and K. Yoshimoto,”Identification of   protease serine S1 family member 53 as a mitochondrial protein in murine   islet beta cells”, Islets., 2022, doi:   10.1080/19382014.2021.1982325.
23 Cell:MSCs Flow Cytometer S.Y. Jo, H.J. Cho and T.M. Kim,”Fenoldopam mesylate enhances the survival of mesenchymal   stem cells under oxidative stress and increases the therapeutic function in   acute kidney injury”, Cell Transplant., 2023, doi:   10.1177/09636897221147920.
24 Cell:Neuro-2A Microscope、Plate reader Y. Wang, Y. Shinoda, A. Cheng, I. Kawahata and   K. Fukunaga,”Epidermal fatty acid-binding protein 5   (FABP5) Involvement in alpha-synuclein-induced mitochondrial injury under   oxidative stress”, Biomedicines., 2021, doi:   10.3390/biomedicines9020110.
25 Cell:Neuron Microscope I. Kawahata, L. Luc Bousset, R.   Melki and K. Fukunaga , “Fatty   Acid-Binding Protein 3 is Critical for α-Synuclein Uptake and MPP+-Induced   Mitochondrial Dysfunction in Cultured Dopaminergic Neurons “, Int J   Mol Sci., 2019, 20, 5358.
26 Cell:Neuron Microscope A. Fukuda, S. Nakashima,Y. Oda, K. Nishimura,   H. Kawashima, H. Kimura, T. Ohgita, E. Kawashita, K. Ishihara, A. Hanaki, M.   Okazaki, E. Matsuda, Y. Tanaka, S. Nakamura, T. Matsumoto, S. Akiba, H.   Saito, H. Matsuda and K. Takata,”Plantainoside B in Bacopa monniera   Binds to Aβ Aggregates Attenuating Neuronal Damage and Memory Deficits   Induced by Aβ”, Biol Pharm Bull., 2023, doi:   10.1248/bpb.b22-00797.
27 Cell:PAECs Plate reader T. Sakai, H. Takagaki, N. Yamagiwa, M. Ui, S.   Hatta and J. Imai,”Effects of the cytoplasm and mitochondrial specific   hydroxyl radical scavengers TA293 and mitoTA293 in bleomycin-induced   pulmonary fibrosis model mice”, Antioxidants (Basel)., 2021,   doi: 10.3390/antiox10091398.
28 Cell:PANC-1 Plate reader W.A. Naime, A. Kimishima, A. Setiawan, J.R.   Fahim, M.A. Fouad, M.S. Kamel and M. Arai,”Mitochondrial Targeting in an   Anti-Austerity Approach Involving Bioactive Metabolites Isolated from the   Marine-Derived Fungus Aspergillus sp.”, Marine drugs., 2020,   doi: 10.3390/md18110555.
29 Cell:PANC-1, MIAPaca-2 Microscope T. Taniai, Y. Shirai,Y. Shimada, R. Hamura, M.   Yanagaki, N. Takada, T. Horiuchi, K. Haruki, K. Furukawa, T. Uwagawa, K.   Tsuboi, Y. Okamoto, S. Shimada, S. Tanaka, T. Ohashi and T.   Ikegami,”Inhibition of acid ceramidase elicits mitochondrial dysfunction   and oxidative stress in pancreatic cancer cells”, Cancer   Sci., 2021, doi: 10.1111/cas.15123.
30 Cell:PC Flow Cytometer R. Hamura, Y. Shirai,Y. Shimada, N. Saito, T.   Taniai, T. Horiuchi, N. Takada, Y. Kanegae, T. Ikegami, T. Ohashi and K.   Yanaga ,”Suppression of lysosomal acid alpha‐glucosidase impacts the   modulation of transcription factor EB translocation in pancreatic   cancer”, Cancer Sci., 2021, doi: 10.1111/cas.14921.
31 Cell:Porcine oocytes Microscope W. Hu, Y. Zhang, D. Wang, T. Yang, J. Qi, Y.   Zhang, H. Jiang, J Zhang, B. Sun and S. Liang,”Iron Overload-Induced   Ferroptosis Impairs Porcine Oocyte Maturation and Subsequent Embryonic   Developmental Competence in vitro”, Front Cell Dev Biol., 2021,   doi: 10.3389/fcell.2021.673291.
32 Cell:Porcine oocytes Microscope Y. Xiao, B. Yuan, W. Hu, J. Qi, H. Jiang, B.   Sun, J. Zhang and S. Liang,”Tributyltin Oxide Exposure During in vitro   Maturation Disrupts Oocyte Maturation and Subsequent Embryonic Developmental   Competence in Pigs”, Front Cell Dev Biol., 2021, doi:   10.3389/fcell.2021.683448.
33 Cell:RGC-5 Plate reader Y. Aoyama, S. Inagaki, K. Aoshima, Y. Iwata,   S. Nakamura, H. Hara and M. Shimazawa,”Involvement of endoplasmic   reticulum stress in rotenone-induced leber hereditary optic neuropathy model   and the discovery of new therapeutic agents”, J Pharmacol Sci   . .,2021, doi: 10.1016/j.jphs.2021.07.003.
34 Cell:SAS,HSC-2 Plate reader K. Yamana, J. Inoue, R. Yoshida, J. Sakata, H.   Nakashima, H. Arita, S. Kawaguchi, S. Gohara, Y. Nagao, H. Takeshita, M.   Maeshiro, R. Liu, Y. Matsuoka, M. Hirayama, K. Kawahara, M. Nagata, A.   Hirosue, R. Toya, R. Murakami, Y. Kuwahara, M. Fukumoto and H. Nakayama,”Extracellular   vesicles derived from radioresistant oral squamous cell carcinoma cells   contribute to the acquisition of radioresistance via the miR‐503‐3p‐BAK   axis”, J Extracell Vesicles., 2021, doi: 10.1002/jev2.12169.
35 Cell:SBC-3 Flow Cytometer N. Takahashi, T. Iguchi, M. Kuroda, M. Mishima   and Y. Mimaki,”Novel Oleanane-Type Triterpene   Glycosides from the Saponaria officinalis L. Seeds and Apoptosis-Inducing   Activity via Mitochondria”, Int J Mol Sci., 2022, doi:   10.3390/ijms23042047.
36 Cell:SH-SY5Y Microscope Q. Guo, I. Kawahata, A. Cheng, H. Wang, W.   Jia, H. Yoshino and K. Fukunaga,”Fatty acid-binding   proteins 3 and 5 are involved in the initiation of mitochondrial damage in   ischemic neurons”, Redox Biology., 2023, doi:   10.1016/j.redox.2022.102547.
37 Cell:SiHa Microscope F.F. Gao, J.H. Quan, M.A. Lee, W. Ye, J.M.   Yuk, G.H. Cha, I.W. Choi and Y.H. Lee,”Trichomonas vaginalis induces   apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in   SiHa cells”, Parasites &vectors., 2021, doi:   10.1186/s13071-021-05098-2.
38 Cell:SU-DHL-2 Flow Cytometer Q. Zhao, D. Jiang, X. Sun, Q. Mo, S. Chen, W.   Chen, R. Gui and X. Ma,”Biomimetic nanotherapy: core–shell structured   nanocomplexes based on the neutrophil membrane for targeted therapy of   lymphoma”, J Nanobiotechnology., 2021, doi: 10.1186/s12951-021-00922-4.
39 Cell:THP-1 Microscope W. Zheng, Z. Zhou, Y. Rui, R. Ye, F. Xia, F.   Guo, X. Liu, J. Su, M. Lou, and X.F. Yu,”TRAF3   activates STING-mediated suppression of EV-A71 and target of viral   evasion”, Signal Transduct Target Ther., 2023, doi:   10.1038/s41392-022-01287-2.
40 Cell:TSM15 In Cell Analyzer M. Honda, F. Shimizu, R. Sato, Y. Mizukami, K.   Watanabe, Y. Takeshita, T. Maeda, M. Koga and T. Kanda,”Jo-1 Antibodies   From Myositis Induce Complement-Dependent Cytotoxicity and TREM-1   Upregulation in Muscle Endothelial Cells”, Neurol Neuroimmunol   Neuroinflamm., 2023, doi: 10.1212/NXI.0000000000200116.
41 Cell:tumor Flow Cytometer H. Wang, X. Rong, G. Zhao, Y. Zhou, Y. Xiao,   D. Ma, X. Jin, Y. Wu, Y. Yan, H. Yang, Y. Zhou, M. Qian, C. Niu, X. Hu, D.Q.   Li, Q. Liu, Y. Wen, Y.Z. Jiang, C. Zhao and Z.M. Shao ,”The microbial   metabolite trimethylamine N-oxide promotes antitumor immunity in   triple-negative breast cancer”, Cell Metab., 2022, doi:   10.1016/j.cmet.2022.02.010.
42 Cell:TY10 In Cell Analyzer F. Shimizu, R. Ogawa, Y. Mizukami, K.   Watanabe, K. Hara, C. Kadono, T. Takahashi, T. Misu, Y. Takeshita, Y. Sano,   M. Fujisawa, T. Maeda, I. Nakashima, K. Fujihara and T. Kanda,”GRP78   antibodies are associated with blood-brain barrier breakdown in anti–myelin   oligodendrocyte glycoprotein antibody–associated disorder”, Neurol   Neuroimmunol Neuroinflamm., 2022, doi: 10.1212/NXI.0000000000001038.
43 Cell:U2OS, HeLa Microscope T. Namba, “BAP31   regulates mitochondrial function via interaction with Tom40 within   ER-mitochondria contact sites “, Sci Adv., 2019, 5, (6),   1386.

常见问题Q&A

Q1: 本试剂盒可以检测多少次?
A1:大概的使用次数请参考下表:
检测装置 容器 使用次数 液量
流式细胞仪 100次 0.5 ml/次
荧光显微镜
荧光酶标仪
35 mm dish 25块板 2 ml/孔
8孔Chamber Slide 30块板 200 μl/孔
96孔板 5块板 100 μl/孔
Q2:在JC-1染色后,可以使用PBS代替HBSS洗涤吗?
A2:我们建议使用HBSS来减少对细胞的损伤。如果您手边没有HBSS的话,建议使用培养基洗净。
Q3:可以使用含血清的培养基吗?
A3:在清洗细胞和Working Solution中可以使用含血清的培养基。在观察荧光时建议使用Imaging Buffer。如果一定要使用含血清的培养基的话,建议不要加酚红。
Q4:染色后细胞固定或者固定后进行染色可以实现吗?
A4:细胞固定操作会使得线粒体去极化,所以染色前后均不能进行细胞固定。
 

Q5:处理后的样品与对照组相比较,红和绿两种荧光值都增加(或减少)了,结果该如何解释?

A5:请先比较实验组和对照组的荧光比值,两者相比,荧光比越低,线粒体膜电位越低。

用荧光之比进行结果分析的理由。

JC-1由于膜电位依存性地在细胞中积蓄,根据细胞的状态,每个细胞的JC-1的浓度有可能不同。

由于对照组和实验组处理样品的细胞状态不同,JC-1的累积浓度不同。)

另外,在线粒体膜电位较高的状态下,JC-1会聚集在一起,使荧光从绿色转移到红色。

该聚集体的量取决于膜电位的程度,因此可以用红/绿之比来比较样品之间的线粒体膜电位。

<参考文献>

1)    Cossarizza, A. et al., Biochem Biophys Res Commun., 1993, 197(1), 40.

2)    Perelman, A. et al., Cell Death and Disease, 2012, 3, e430

3)    Smiley, S. T. et al., Proc. Nail. Acad. Sci., 1991, 88, 3671.

关联产品

mtSOX Deep Red – Mitochondrial Superoxide Detection
线粒体超氧化物检测用荧光染料
线粒体膜电位检测试剂盒
线粒体膜电位检测试剂盒
MitoBright LT Green试剂
线粒体长效荧光探针-绿色
MitoBright LT Deep Red试剂
线粒体长效荧光探针-深红色
MitoBright LT Red试剂
线粒体长效荧光探针-红色